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Abstract: In this paper, we consider the following question. What is the maximum number
of pairwise disjoint k-spreads that exist in PG(n, q)? We prove that if k + 1 divides n + 1 and
n > k then there exist at least two disjoint k-spreads in PG(n, q) and there exist at least 2k+1 − 1
pairwise disjoint k-spreads in PG(n, 2). We also extend the known results on parallelism in a
projective geometry from which the points of a given subspace were removed. © 2014 Wiley
Periodicals, Inc. J. Combin. Designs 00: 1–14, 2014
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1. INTRODUCTION

A k-spread in the n-dimensional projective space of finite order q, namely PG(n, q) is a
set S of k-dimensional subspaces (henceforth called k-subspaces) in which each point of
PG(n, q) is contained in exactly one element of S. A necessary and sufficient condition
that a k-spread exists in PG(n, q) is that k + 1 divides n + 1. The size of a k-spread in
PG(n, q) is qn+1−1

qk+1−1 . k-spreads were extensively studied since they have many applications
in projective geometry, for example, [5, 14].

Parallelism is a well-known concept in combinatorial designs. A parallel class in a
block design, is a set of blocks that partition the set of points of the design. Spreads
are also a type of combinatorial design on which a parallelism can be defined [11]. A
k-spread is called a parallel class as it partitions the set of all the points of PG(n, q).
A k-parallelism in PG(n, q) is a partition of the k-subspaces of PG(n, q) into pairwise

Contract grant sponsor: Israeli Science Foundation (ISF); Contract grant number: 10/12.

Journal of Combinatorial Designs
© 2014 Wiley Periodicals, Inc. 1



2 ETZION

disjoint k-spreads. Some 1-parallelisms of PG(n, q) are known for many years. For q = 2
and odd n there is a 1-parallelism in PG(n, 2). Such a parallelism was found in the context
of Preparata codes and it is known that many such parallelisms exist [1, 2]. For any other
power of a prime q, if n = 2i − 1, i ≥ 2, then a 1-parallelism was shown in [3]. In the
last 40 years no new parameters for 1-parallelisms were shown until recently, when a
1-parallelism in PG(5, 3) was proved to exist in [9]. A k-parallelism for k > 1 was not
known until a 2-parallelism in PG(5, 2) was found by [16].

The difficulty to find new parameters for 1-parallelisms and k-parallelisms motivates
the following question. What is the maximum number of pairwise disjoint k-spreads
that exist in PG(n, q)? Beutelspacher [4] has proved that if n is odd then there exist
q2�log n� + · · · + q + 1 pairwise disjoint 1-spreads in PG(n, q). In general we don not
have a proof for the following most simple question. Given q, n, and k, such that k + 1
divides n + 1 and n > k, do there exist two disjoint k-spreads in PG(n, q)? In this paper
we will give a positive answer for this question. Moreover, we will prove that there exist
at least 2k+1 − 1 pairwise disjoint k-spreads in PG(n, 2) if k + 1 divides n + 1 and n > k.

One of the main tools for our constructions will come from coding theory. It will based
on error-correcting codes in the Grassmannian space that are constructed by lifting ma-
trices of error-correcting codes in the rank–metric. This method is well documented, for
example, [7, 8, 17]. The interest in such construction came as result of a new application
of such codes in random network coding [13].

The rest of this paper is organized as follows. In Section 2, we will present the two
equivalent ways to handle subspaces, in projective geometry and in the Grassmannian. We
will explain the method that transfers matrices into subspaces and rank–metric codes into
Grassmannian codes. We will present some basic results and connect them into the theory
of projective geometry in general and the theory of spreads in particular. In Section 3,
we present a construction that produces 2k+1 − 1 disjoint k-spreads in PG(2k + 1, 2).
In Section 4, we prove that for a general q there exist at least two disjoint k-spreads in
PG(2k + 1, q). In Section 5, we present a recursive construction to obtain two disjoint
k-spreads in PG(n, q) if k + 1 divides n + 1 and n > k; and 2k+1 − 1 pairwise disjoint
k-spreads in PG(n, 2) if k + 1 divides n + 1 and n > k. The construction will be based on
a design called subspace transversal design that will be defined. It will lead to parallelisms
in partial sets of PG(n, q), which will be used in the recursive construction. Conclusions
and problems for future research are given in Section 6.

2. REPRESENTATION OF SUBSPACES, CODES, AND SPREADS

The projective geometry PG(n, q) consists of qn+1−1
q−1 points and (qn+1−1)(qn−1)

(q2−1)(q−1) lines. The

points are represented by a set of nonzero elements from F
n+1
q , of maximum size, in which

each two elements are linearly independent. Each element x of these qn+1−1
q−1 elements

represents q − 1 elements of F
n+1
q which are the multiples of x by the nonzero elements

of Fq . A line in PG(n, q) consists of q + 1 points. Given two distinct points x and y,
there is exactly one line which contains these two points. This line contains x and y and
the q − 1 points of the form γ x + y, where γ ∈ Fq \ {0}. A point is a 0-subspace in
PG(n, q), a line is a 1-subspace in PG(n, q), and a k-subspace is constructed by taking
a (k − 1)-space Y and a point x not on Y and all points that are constructed by a linear
combination of x with any set of points from Y .
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The Grassmannian Gq(n, k) consists of all the k-dimensional subspaces of F
n
q . Clearly,

a k-dimensional subspace from Gq(n, k) is a (k − 1)-subspace of PG(n − 1, q). Extensive
research has been done on the Grassmannian in the past few years. The motivation for this
research is the application of codes in the Grassmannian for error-correction in random
network coding found recently by Koetter and Kschischang [13].

A subset C ofGq (n, k) is called an (n, M, d, k)q constant dimension code if it has size M

and minimum subspace distance d, where the distance function in Gq(n, k) is defined by

dS(X,Y )
def=2k − 2 dim

(
X ∩Y

)
,

for any two subspaces X and Y in Gq(n, k).
Two k-dimensional subspaces in Gq(n, k) are called disjoint if their intersection is the

null space. A spread in Gq(n, k) is a set S of pairwise disjoint k-dimensional subspaces,
such that each nonzero element of F

n
q is contained in exactly one element of S. Clearly,

such a spread is a (k − 1)-spread in PG(n − 1, q). Hence, a spread in Gq(n, k) exists
if and only if k divides n. A set of M pairwise disjoint spreads in Gq(n, k) is a set of
M pairwise disjoint (k − 1)-spreads in PG(n − 1, q). Henceforth, our discussion will
be in terms of k-dimensional subspaces of Gq(n, k) and will be translated into related
results in terms of subspaces in projective geometry. The reason is that some of the new
developed theory for constant dimension codes will serve as the building blocks for our
constructions and results.

One of the main constructions for constant dimension codes is based on rank–metric
codes. For two k × � matrices A and B over Fq the rank distance is defined by

dR(A,B)
def=rank(A − B).

A [k × �, �, δ]q rank–metric code C is a linear code, whose codewords are k × � matrices
over Fq ; they form a linear subspace with dimension � of F

k×�
q , and for each two

distinct codewords A and B we have that dR(A,B) ≥ δ (clearly, δ ≤ min{k, �}). For a
[k × �, �, δ]q rank–metric code C it was proved in [6, 10, 15] that

� ≤ min {k(� − δ + 1), �(k − δ + 1)} . (1)

This bound is attained for all possible parameters and the codes that attain it are called
maximum rank distance codes (or MRD codes in short).

There is a close connection between constant dimension codes and rank–metric
codes [7, 17]. Let A be a k × � matrix over Fq and let Ik be the k × k identity ma-
trix. The matrix [Ik A] can be viewed as a generator matrix of a k-dimensional subspace
of F

k+�
q , and it is called the lifting of A [17].

Example 1. Let A and [I3 A] be the following matrices over F2

A =
⎛
⎝

1 1 0
0 1 1
0 0 1

⎞
⎠ , [I3 A] =

⎛
⎝

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 0 0 1

⎞
⎠ ,

then the subspace obtained by the lifting of A is given by the following 8 vectors:

(100110), (010011), (001001), (110101),

(101111), (011010), (111100), (000000).
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A constant dimension code C such that all its codewords are lifted codewords of an
MRD code is called a lifted MRD code [17]. This code will be denoted by C

MRD. A
lifted MRD code constructed from [k × (n − k), (n − k)(k − δ + 1), δ]q MRD code will

be called an (n, k, δ)q C
MRD.

Theorem 1. [17] If C is a [k × (n − k), (n − k)(k − δ + 1), δ]q MRD code then

(n, k, δ)q C
MRD is an (n, q(n−k)(k−δ+1), 2δ, k)q code.

Remark 1. The parameters of the [k × (n − k), (n − k)(k − δ + 1), δ]q MRD code C
given in Theorem 1 imply that k ≤ n − k, by (1).

Let V
(n,k) be the set of nonzero vectors of F

n
q whose first k entries form a nonzero

vector. The following results were proved in [8].

Lemma 1. The codewords of an (n, k, δ)q C
MRD can be partitioned into q(n−k)(k−δ)

sets, called parallel classes, each one of size qn−k , such that in each parallel class each
element of V

(n,k) is contained in exactly one codeword.

Corollary 1. The codewords of an (n, k, δ)q C
MRD can be partitioned into q(n−k)(k−δ)

codes, each one is an (n, qn−k, 2k, k)q code.

For a given x ∈ F
k
2, let V

(n,k)
x denote the set nonzero vectors in F

n
2 whose first k entries

form the vector x. In the sequel, let 0 denote the all-zero vector.
In the sequel we will represent nonzero elements of the finite field F2m in two different

ways. The first one is by m-tuples over F2 (in other words, F2m is represented by F
m
2 )

and the second one is by powers of a primitive element α in F2m . We will not distinguish
between these two isomorphic representations. When an m-tuple z over F2 will be
multiplied by an element β ∈ F2m we will view z as an element in F2m and the result will
be an element in F2m which is also represented by an m-tuple over F2 (an element in
F

m
2 ). Also, when we write V

(n,k)
γ , where γ ∈ F2k , it is the same as writing V

(n,k)
x , x ∈ F

k
2,

where x is the binary k-tuple that represents γ . Therefore, vectors can be represented by
powers of primitive elements in the related finite field. We will use this notation in some
cases.

For a set S ⊆ F
m
2 and a nonzero element β ∈ F2m , we define βS

def={βx : x ∈ S}. We
note that we can take the set S to be a subspace. By using the Singer cycle subgroup [12] it
is observed that if X is a k-dimensional subspace of F

m
2 and β is a nonzero element of F2m

then βX is also a k-dimensional subspace of F
m
2 . This property will be used throughout

the paper.

3. A CONSTRUCTION FOR q = 2 AND n = 2k

Recall that the vectors of F
2k
2 \ {0} are partitioned into 2k parts, V

(2k,k)
x , x ∈ F

k
2. Let V0

denote the k-dimensional subspace spanned by V
(2k,k)
0 .

Consider k-dimensional subspaces from G2(2k, k) of three types:

1. A k-dimensional subspace Y ∈ G2(2k, k) is of Type A if for each x ∈ F
k
2 \ {0}, Y

contains exactly one vector from V
(2k,k)
x , and Y does not contain any vector from

V
(2k,k)
0 .

2. A k-dimensional subspace Y ∈ G2(2k, k) is of Type B if Y contains exactly one
vector from V

(2k,k)
0 .
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3. A k-dimensional subspace Y ∈ G2(2k, k) is of Type C if all the nonzero vectors of
Y are contained in V

(2k,k)
0 , that is, Y = V0.

One can readily verify that

Lemma 2. If Z is a k-dimensional subspace of Type B then Z has the structure

{(0, 0), (0, z), (x0, y0), (x0, y1), (x1, y2), (x1, y3), . . . , (x2k−1−2, y2k−3), (x2k−1−2, y2k−2)},

where {0, x0, x1, . . . , x2k−1−2} is a (k − 1)-dimensional subspace of F
2k
2 and for each i,

0 ≤ i ≤ 2k−1 − 2, we have z = y2i + y2i+1.

For completeness, even so it is not necessary for our discussion, we give the following
lemma without a proof (this is left for the interested reader).

Lemma 3.

� There exist exactly 2k2
distinct k-dimensional subspaces of Type A.

� There exist exactly (2k − 1)22(k−1)2
distinct k-dimensional subspaces of Type B.

� There exists exactly one k-dimensional subspace of Type C.

Our construction which follows will yield 2k − 1 pairwise disjoint spreads in G2(2k, k).
Each spread will consist of exactly 2k − 1 subspaces of Type B and exactly two subspaces
of Type A. In the construction, a k-dimensional subspace Z of F

2k
2 will be represented as

Z = {(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)},

where xi, yi ∈ F
k
2 and yi 	= 0 if xi = 0, 0 ≤ i ≤ 2k − 2.

Let C0 be a (2k, k, k − 1)2 C
MRD, that is, a (2k, 22k, 2(k − 1), k)2 code. By Corol-

lary 1, C0 can be partitioned into 2k codes, each one is a (2k, 2k, 2k, k)2 code. Each
one of these 2k codes can be completed to a spread if we add V0 to the code. C0

is constructed from a linear rank–metric code C and therefore one of its codewords
is the k-dimensional subspace {(0, 0), (x0, 0), (x1, 0), . . . , (x2k−2, 0)}. Since the mini-
mum subspace distance of C0 is 2(k − 1), it follows that for each other codeword
{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)} of C0, at most one of yis is the all-zero
vector. Therefore,

Lemma 4. The code C0 can be partitioned into 2k (2k, 2k, 2k, k)2 codes, for which,
each one which does not contain the codeword {(0, 0), (x0, 0), (x1, 0), . . . , (x2k−2, 0)},
contains exactly 2k − 1 codewords of the form

{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)},

in which exactly one of the yis is the all-zero vector.

Corollary 2. There exists a (2k, 2k + 1, 2k, k)2 code which contains V0 as a codeword
and for each codeword {(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)} at most one of the
yis is the all-zero vector.

Let C be a (2k, 2k + 1, 2k, k)2 code as described in Corollary 2, that is, it contains
V0 as a codeword and for each codeword {(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)} at

most one of the yis is the all-zero vector. Let
↔
C be the (2k, 2k + 1, 2k, k)2 code obtained
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from C as follows

↔
C

def= {{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)} :

{(0, 0), (y0, x0), (y1, x1), . . . , (y2k−2, x2k−2)} ∈ C}.
Henceforth, let α be a primitive element in the field F2k . As a consequence of Lemma 4

and Corollary 2 we have

Lemma 5. The code
↔
C is a spread, in G2(2k, k), which consists of exactly 2k − 1

subspaces of Type B and exactly two subspaces of Type A. One of the two subspaces of
Type A has the form {(0, 0), (x0, 0), (x1, 0), . . . , (x2k−2, 0)}.

Now, we are in a position to define 2k − 1 pairwise disjoint spreads in G2(2k, k). For
our first spread S0 defined as follows, we distinguish between two cases:

Case 1: If there is no subspace in
↔
C of the form {(0, 0), (α0, αj ), (α1, αj+1), . . . ,

(α2k−2, αj+2k−2)}, for any j , 0 ≤ j ≤ 2k − 2, then

S0
def=

{
{(0, 0), (α0, y0 + α0), (α1, y1 + α1), (α2, y2 + α2), . . . , (α2k−2, y2k−2 + α2k−2)} :

{(0, 0), (α0, y0), (α1, y1), (α2, y2), . . . , (α2k−2, y2k−2)} ∈↔
C

}

∪
{
{(0, 0), (0, z), (αi0, y0 + αi0 ), (αi0, y1 + αi0 ), . . . , (αi2k−1−2, y2k−4 + αi2k−1−2 ),

(αi2k−1−2, y2k−3 + αi2k−1−2 )} : {(0, 0), (0, z), (αi0, y0), (αi0, y1), (αi1, y2), (αi1, y3), . . . ,

(αi2k−1−2, y2k−4), (αi2k−1−2, y2k−3)} ∈↔
C

}
.

Case 2: If there exists a subspace in
↔
C of the form {(0, 0), (α0, αj ), (α1, αj+1), . . . ,

(α2k−2, αj+2k−2)} for some j , 0 ≤ j ≤ 2k − 2, then

S0
def=

{
{(0, 0), (α0, y0 + α0), (α1, y1 + α2), (α2, y2 + α4), . . . , (α2k−2, y2k−2 + α2k−3)} :

{(0, 0), (α0, y0), (α1, y1), (α2, y2), . . . , (α2k−2, y2k−2)} ∈↔
C

}

∪
{
{(0, 0), (0, z), (αi0, y0 + α2·i0 ), (αi0, y1 + α2·i0 ), . . . ,

(αi2k−1−2, y2k−4 + α2·i2k−1−2 ), (αi2k−1−2, y2k−3 + α2·i2k−1−2 )} :

{(0, 0), (0, z), (αi0, y0), (αi0, y1), . . . , (αi2k−1−2, y2k−4), (αi2k−1−2, y2k−3)} ∈↔
C

}
.

The following two lemmas can be easily verified.

Lemma 6. If {(0, 0), (0, z), (αi0, y0), (αi0, y1), . . . , (αi2�−1−2, y2�−4), (αi2�−1−2, y2�−3)} is
an �-dimensional subspace and {(0, 0), (αi0, v0), . . . , (αi2�−1−2, v2�−1−2)} is an (� − 1)-
dimensional subspace then

{(0, 0), (0, z), (αi0, y0 + v0), (αi0, y1 + v0), . . . , (αi2�−1−2, y2�−4 + v2�−1−2),

(αi2�−1−2, y2�−3 + v2�−1−2)}
is an �-dimensional subspace.
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Lemma 7. If {(0, 0), (αi0, y0), (αi1, y1), . . . , (αi2�−2, y2�−2)} and {(0, 0), (αi0, v0), (αi1,

v1), . . . , (αi2�−2, v2�−2)} are two distinct �-dimensional subspaces then

{(0, 0), (αi0, y0 + v0), (αi1, y1 + v1), . . . , (αi2�−2, y2�−2 + v2�−2)}
is an �-dimensional subspace.

Lemma 8. S0 is a spread.

Proof. By Lemma 5,
↔
C is a spread. By Lemmas 6 and 7, the elements defined in S0 are

k-dimensional subspaces. It is easy to verify by the definition of S0 that if X and Y are

two disjoint k-dimensional subspaces of
↔
C then their related k-dimensional subspaces

X′ and Y ′, respectively (constructed from X and Y , respectively) in S0 are also disjoint.
Therefore, S0 is a spread. �

By Lemma 5 and by the definition of S0 we have that

Lemma 9. The spread S0 consists of exactly 2k − 1 subspaces of Type B and exactly
two subspaces of Type A.

By Lemma 5 and by the definition of S0 we also have that

Lemma 10. No subspace in S0 has the form {(0, 0), (x0, 0), (x1, 0), . . . , (x2k−2, 0)}.
At most one of the subspaces of Type A in S0 has the form
{(0, 0), (α0, αj ), (α1, αj+1), . . . , (α2k−2, αj+2k−2)}, for some j , 0 ≤ j ≤ 2k − 2.

Lemma 11. Let X1, X2, . . . , X2�−1 be 2� − 1 (� − 1)-dimensional subspaces of F�
2 . If

each nonzero element of F
�
2 is contained in exactly 2�−1 − 1 subspaces of these 2� − 1

subspaces then X1, X2, . . . , X2�−1 are distinct (� − 1)-dimensional subspaces.

Proof. First note the dim(Xi ∩ Xj ) = � − 2 for 1 ≤ i < j ≤ 2� − 1. Hence, for any
given r , 1 ≤ r ≤ 2� − 1,

2�−1∑
i=1

|Xi ∩ Xr | = 2� − 1 + λr (2�−1 − 1) + (2� − 1 − λr )(2�−2 − 1), (2)

where λr is the number of subspaces in X1, X2, . . . , X2�−1 which equals Xr . On the other
hand, since each nonzero element of Xr is contained in exactly 2�−1 − 1 of these 2� − 1
subspaces then

2�−1∑
i=1

|Xi ∩ Xr | = 2� − 1 + (2�−1 − 1)(2�−1 − 1). (3)

The solution for the equations (2) and (3) is λr = 1, which proves the lemma. �
Corollary 3. Let

{(0, 0), (0, z1), (x0, y0), (x0, y1), (x1, y2), (x1, y3), . . . , (x2k−1−2, y2k−4), (x2k−1−2, y2k−3)}
and

{(0, 0), (0, z2), (u0, v0), (u0, v1), (u1, v2), (u1, v3), . . . , (u2k−1−2, v2k−4), (u2k−1−2, v2k−3)},
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be two subspaces of Type B in S0. Then, the (k − 1)-dimensional subspaces
{0, x0, x1, . . . , x2k−1−2} and {0, u0, u1, . . . , u2k−1−2} are not equal.

Given the spread S0, we define the spread Si , 1 ≤ i ≤ 2k − 2 as follows.

Si
def={{(0, 0), (x0, α

iy0), (x1, α
iy1), . . . , (x2k−2, α

iy2k−2)} : {(0, 0), (x0, y0), (x1, y1), . . . ,

(x2k−2, y2k−2)} ∈ S0}.

Lemma 12. For each i, 1 ≤ i ≤ 2k − 2, Si is a spread.

Proof. Follows immediately from the following two simple observations. The first
one is that if {(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)} is a k-dimensional subspace
then also the set {(0, 0), (x0, α

iy0), (x1, α
iy1), . . . , (x2k−2, α

iy2k−2)} is a k-dimensional

subspace. The second one is that if the set Fdef={(uj , vj ) : uj , vj ∈ F
k
2, (uj , vj ) 	=

(0, 0), 0 ≤ j ≤ 22k − 2} contains all the 22k − 1 nonzero elements of F
k
2 × F

k
2 then the

set {(uj , α
ivj ) : (uj , vj ) ∈ F , 0 ≤ j ≤ 22k − 2} also contains all the 22k − 1 nonzero

elements of F
k
2 × F

k
2. �

It is easily verified that

Lemma 13. For each 0 ≤ i ≤ 2k − 2, if the k-dimensional subspace

{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)}

is of Type A (Type B, respectively) then the k-dimensional subspace

{(0, 0), (x0, α
iy0), (x1, α

iy1), . . . , (x2k−2, α
iy2k−2)}

is also of Type A (Type B, respectively).

Lemma 14. For each i1, i2, such that 0 ≤ i1 < i2 ≤ 2k − 2, the spreads Si1 and Si2 are
disjoint.

Proof. By the definition of Type A and Type B, and by the definition of Sj , we have that
for each j , 1 ≤ j ≤ 2k − 2, the number of subspaces of Type A (Type B, respectively) in
S0 is equal to the number of subspaces of Type A (Type B, respectively) in Sj . Therefore,
by Lemma 9, in Sj , 1 ≤ j ≤ 2k − 2, there are exactly 2k − 1 subspaces of Type B and
exactly two subspaces of Type A. We distinguish now between the two types of subspaces.

Case 1: Subspaces of Type B.

By Corollary 3, if {0, x0, x1, . . . , x2k−1−2} is a (k − 1)-dimensional subpaces of F
k
2 then

there is at most one subspace of the form

{(0, 0), (0, z), (x0, y0), (x0, y1), (x1, y2), (x1, y3), . . . , (x2k−1−2, y2k−4), (x2k−1−2, y2k−3)},

in S0. By the construction of spread Sj , 1 ≤ j ≤ 2k − 2, from S0, we have that the spreads
Si1 and Si2 can have a subspace of Type B in common if for such a (k − 1)-dimensional
subspace {0, x0, x1, . . . , x2k−1−2}, the two k-dimensional subspaces

{(0, 0), (0, αi1z), (x0, α
i1y0), (x0, α

i1y1), (x1, α
i1y2), (x1, α

i1y3), . . . ,

(x2k−1−2, α
i1y2k−4), (x2k−1−2, α

i1y2k−3)}
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and

{(0, 0), (0, αi2z), (x0, α
i2y0), (x0, α

i2y1), (x1, α
i2y2), (x1, α

i2y3), . . . ,

(x2k−1−2, α
i2y2k−4), (x2k−1−2, α

i2y2k−3)}
are equal. This is clearly impossible since αi1z 	= αi2z. Hence, Si1 and Si2 have distinct
subspaces of Type B.

Case 2: Subspaces of Type A.

A k-dimensional subspace of Type A in S0 has the form

{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)},
where all the xj ’s are different. If yr 	= 0 for some r , then

{(0, 0), (x0, α
i1y0), (x1, α

i1y1), . . . , (x2k−2, α
i1y2k−2)} 	= {(0, 0), (x0, α

i2y0),

(x1, α
i2y1), . . . , (x2k−2, α

i2y2k−2).

By Lemma 10, not all the yj ’s are zeroes and at most one of the subspaces of Type A
in S0 has the form {(0, 0), (α0, αj ), (α1, αj+1), . . . , (α2k−2, αj+2k−2)}, for some j , 0 ≤
j ≤ 2k − 2. Let

{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)}
and

{(0, 0), (x0, v0), (x1, v1), . . . , (x2k−2, v2k−2)}
be the two subspaces of Type A in S0. Assume a k-dimensional subspace of Type A in
Si1 is equal a k-dimensional subspace of Type A in Si2 . Then

αi1y� = αi2v�

for each �, 1 ≤ � ≤ 2k − 2. It implies that for each �, 1 ≤ � ≤ 2k − 2, y�

v�
= αi2−i1 , and

hence for all �1, �2, 0 ≤ �1 < �2 ≤ 2k − 1 we have
y�2
v�2

= y�1
v�1

. We distinguish now between
two subcases.

Case 2.1: Assume that there is no subspace of the form {(0, 0), (α0, αj ), (αj , αj+1), . . . ,

(α2k−2, αj+2k−2)}, for any j , 0 ≤ j ≤ 2k − 2, in
↔
C. Hence, S0 contains the k-dimensional

subpace

{(0, 0), (α0, α0), (α1, α1), . . . , (α2k−2, α2k−2)}
and the second subspace of type A does not has the form

{(0, 0), (α0, αj ), (α1, αj+1), . . . , (α2k−2, αj+2k−2)},
for any j , 1 ≤ j ≤ 2k − 2. It implies that there exist �1, �2, 0 ≤ �1 < �2 ≤ 2k − 1 such
that

y�2
v�2

	= y�1
v�1

, a contradiction.
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Case 2.2: Assume that for some j , 0 ≤ j ≤ 2k − 2, there exists a subspace of the form

{(0, 0), (α0, αj ), (α1, αj+1), . . . , (α2k−2, αj+2k−2)}, in
↔
C. Hence, the two subspaces of

Type A in S0 have the form {(0, 0), (α0, α0), (α1, α2), (α2, α4), . . . , (α2k−2, α2k−3)} and
{(0, 0), (α0, αj + α0), (α1, αj+1 + α2), (α2, αj+2 + α4), . . . , (α2k−2, αj+2k−2 + α2k−3)}.
W.l.o.g. we can assume that x0 = α0 and x1 = α1. It implies that y0

v0
= αj + α0 	=

αj + α1 = y1

v1
, a contradiction.

Thus, Si1 and Si2 are disjoint spreads in G2(2k, k). �
Corollary 4. There exists a set of 2k − 1 pairwise disjoint spreads in G2(2k, k).

Corollary 5. There exists a set of 2k+1 − 1 pairwise disjoint k-spreads in PG(2k +
1, 2).

4. A CONSTRUCTION FOR q > 2 AND n = 2k

In this section, we will describe a construction of two disjoint spreads in Gq(2k, k) for
any q > 2. The idea behind the construction will be similar to the one for q = 2. But,
since we construct only two disjoint spreads, the analysis will be much simpler. We will
start by modifying and generalizing the definition of the case where q = 2 for q ≥ 2.

For a given X ∈ Gq(k, 1), let V
(n,k)
X denote the set nonzero vectors in F

n
q whose first k

entries form any given nonzero vector of X. Let V
(n,k)
0 denote a maximal set of qn−k−1

q−1
nonzero vectors in F

n
q whose first k entries are zeroes, for which any two vectors in the set

are linearly independent. Let V0 denote the k-dimensional subspace spanned by V
(n,k)
0 .

We consider k-dimensional subspaces of three types:

1. A k-dimensional subspace Y ∈ Gq(2k, k) is of Type A if for each X ∈ Gq(k, 1), Y

contains exactly one vector from V
(2k,k)
X , and Y does not contain any vector from

V
(2k,k)
0 .

2. A k-dimensional subspace Y ∈ Gq(2k, k) is of Type B if Y contains exactly one
vector from V

(2k,k)
0 .

3. A k-dimensional subspace Y ∈ Gq(2k, k) is of Type C if all the vectors of Y are
contained in V

(2k,k)
0 .

Throughout this section, let � = qk−1
q−1 − 1. Let C0 be an (2k, q2k, 2(k − 1), k)q C

MRD.
C0 is constructed from a linear rank–metric code C and therefore the k-dimensional sub-
space 〈{(0, 0), (x0, 0), (x1, 0), . . . , (x�, 0)}〉 is a codeword of C0. Since the minimum sub-
space distance of C0 is 2(k − 1), it follows that if 〈{(0, 0), (x0, y0), (x1, y1), . . . , (xk, yk)}〉
is another codeword of C0, then at most one of yi’s is an all-zero vector. Since
|G2(k, 1)| = qk−1

q−1 it follows from Lemma 1 and Corollary 1 that

Lemma 15. The code C0 has an (n, qk, 2k, k)q subcode C
′
0, which contains exactly

qk−1
q−1 codewords of the form

〈{(0, 0), (x0, y0), (x1, y1), . . . , (xk, yk)}〉,

in which exactly one of the yis is the all-zero vector.
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Corollary 6. There exists an (2k, qk + 1, 2k, k)q code which contains V0 as a codeword
and for each codeword

〈{(0, 0), (x0, y0), (x1, y1), . . . , (x2k−2, y2k−2)}〉 at most one of the
yis is the all-zero vector.

Let C be an (2k, qk + 1, 2k, k)q code as described in Corollary 6. Let
↔
C be the

(2k, qk + 1, 2k, k)q code obtained from C as follows

↔
C

def={〈{(0, 0), (x0, y0), (x1, y1), . . . , (xk, yk)}〉 : 〈{(0, 0), (y0, x0), (y1, x1), . . . ,

(yk, xk)}〉 ∈ C}.

As a consequence of Corollary 6 we have

Lemma 16. The code
↔
C is a spread that consists of exactly qk−1

q−1 subspaces of Type B

and exactly qk + 1 − qk−1
q−1 subspaces of Type A.

Theorem 2. There exist at least two disjoint (2k, qk + 1, 2k, k)q codes.

Proof. By Corollary 1, C0 can be partitioned into qk (2k, qk, 2k, k)q codes. Since

qk > qk + 1 − qk−1
q−1 it follows that at least one of these qk codes does not contain any

of the qk + 1 − qk−1
q−1 subspaces of Type A, which are contained in

↔
C. Let C

′ be this

code. C
′ ∪ V0 is a (2k, qk + 1, 2k, k)q code that contains qk subspaces of Type A and

one subspace of Type C. Therefore,
↔
C and C

′ are disjoint. �

Corollary 7. There exist two disjoint spreads in Gq(2k, k), q > 2.

Corollary 8. There exist two disjoint k-spreads in PG (2k + 1, q), q > 2.

5. A RECURSIVE CONSTRUCTION

Let n = �k, where � ≥ 2. Let Si , 0 ≤ i ≤ M − 1, be a set of M pairwise disjoint spreads in
Gq(n, k). We will describe a construction for M pairwise disjoint spreads in Gq(n + k, k).

First we will define a partial Grassmannian Gq(n1, n2, k), n1 > n2 ≥ k, as the set of
all k-dimensional subspaces from F

n1
q which are not contained in a given n2-dimensional

subspace U of F
n1
q . It can be readily verified that V

(n,k) is a partial GrassmannianGq(n, n −
k, k), where V

(n,k)
0 is the (n − k)-dimensional subspace U . A spread inGq(n1, n2, k) is a set

S of pairwise disjoint k-dimensional subspaces from Gq(n1, n2, k) such that each nonzero
element of F

n1
q \ U is contained in exactly one element of S. A parallelism ofGq(n1, n2, k)

is a set of pairwise disjoint spreads inGq(n1, n2, k) such that each k-dimensional subspace
of Gq(n1, n2, k) is contained in exactly one of the spreads. Beutelspacher [4] proved that if
k = 2 then such a parallelism exists if n2 ≥ 2, n1 − n2 = 2i , for all i ≥ 1 and any q > 2.
If k = 2 and q = 2 then such a parallelism exists if and only if n2 ≥ 3 and n1 − n2 is
even.

In this section, we are going to extend this result for k > 2. Based on these parallelisms
we will present a recursive construction for pairwise disjoint spreads in Gq(n, k), where
k divides n and n > k.
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The following structure defined in [8] is the key for our construction. A subspace
transversal design of groupsize qn−k , block dimension k, and strength t , denoted by
STDq(t, k, n − k), is a triple (V, G, B), where V is a set of points, G is a set of groups,
and B is a set of blocks. These three sets must satisfy the following five properties:

1. V is a set of size qk−1
q−1 qn−k (the points).

⋃
X∈Gq (k,1) V

(n,k)
X is used as the set of points

V.
2. G is a partition of V into qk−1

q−1 classes of size qn−k (the groups); the groups which

are used are defined by V
(n,k)
X , X ∈ Gq(k, 1).

3. B is a collection of k-dimensional subspaces of F
n
q which contain nonzero vectors

only from V
(n,k) (the blocks);

4. each block meets each group in exactly one point;
5. every t-dimensional subspace (with points from V) which meets each group in at

most one point is contained in exactly one block.

An STDq(t, k, m) is resolvable if the set B can be partitioned into sets B1, ..., Bs ,
where each vector of V

(n,k) is contained in exactly one block of each Bi , 1 ≤ i ≤ s. The
sets B1, ..., Bs are called parallel classes. The following theorem was established in [8].

Theorem 3. The codewords of an (n, k, δ)qC
MRD form the blocks of a resolvable

STDq(k − δ + 1, k, n − k), with the set of groups V
(n,k)
X , X ∈ Gq(k, 1).

Theorem 3 is the key for our constructions. A resolvable STDq(k, k, n − k) consists
of q(n−k)(k−1) spreads of V

(n,k), that is, a parallelism in Gq(n, n − k, k). A resolvable

STDq(k, k, n − k) is obtained from an (n, k, 1)q C
MRD, which is constructed from a

[k × (n − k), (n − k)k, 1]q MRD code. Thus, we have

Theorem 4. If k = n1 − n2 then there exists a parallelism in Gq(n1, n2, k).

If there exists M pairwise disjoint spreads in Gq(n − k, k) then they can be combined
with M pairwise disjoint spreads in Gq(n, n − k, k) which exist by Theorem 4 to obtain
the following theorem.

Theorem 5. If there exist M pairwise disjoint spreads in Gq(n − k, k) then there exist
M pairwise disjoint spreads in Gq(n, k).

Proof. By Theorem 4, there exists M pairwise disjoint spreads in Gq(n, n − k, k),
in which the removed (n − k)-dimensional subspace is isomorphic to Gq(n − k, k). Let
S1, S2, . . . , SM , be these spreads. Let T1, T2, . . . , TM be the M pairwise disjoint spreads
in Gq(n − k, k). Then S1 ∪ T1, S2 ∪ T2, . . . , SM ∪ TM is a set of M pairwise disjoint
spreads in Gq(n, k). �
Corollary 9. There exists a set of 2k − 1 pairwise disjoint spreads in G2(n, k) if n > k

and k divides n.

Corollary 10. There exist two pairwise disjoint spreads in Gq(n, k) if n > k and k

divides n.

Corollary 11. There exists a set of 2k+1 − 1 pairwise disjoint k-spreads in PG(n, 2) if
n > k and k + 1 divides n + 1.

Corollary 12. There exist two pairwise disjoint spreads k-spreads in PG(n, q) if n > k

and k + 1 divides n + 1.
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6. CONCLUSIONS AND PROBLEMS FOR FUTURE RESEARCH

Finding a k-parallelism in PG(n, q) is an extremely difficult problem. If k > 1 then only
one such parallelism is known. The goal of this paper was to direct the research for the
following slightly easier question. What is the maximum number of pairwise disjoint k-
spreads in PG(n, q)? This number can be greater than one only if n > k and k + 1 divides
n + 1, which is the sufficient and necessary condition for the existence of k-spreads in
PG(n, q). We proved that two such pairwise disjoint k-spreads always exist. If q = 2
then we proved the existence of 2k+1 − 1 pairwise disjoint k-spreads. We also proved
that if k + 1 divides n1 + 1 and n2 + 1, and n1 > n2 > k, then there exist a k-parallelism
in the partial space of dimension n1 from which an n2-subspace was removed. There are
many interesting open problems in this topic. We will state them in an increasing order
of difficulty by our opinion, from the easiest one to the most difficult one.

1. For any q > 2 and k ≥ 1, improve the lower bounds on the number of pairwise
disjoint k-spreads in PG(n, q).

2. For any k > 1, improve the lower bounds on the number of pairwise disjoint k-
spreads in PG(n, 2).

3. Find nontrivial necessary conditions for the existence of a parallelism in
Gq(n1, n2, k).

4. Find new parameters for which there exists a parallelism in Gq(n1, n2, k).
5. For a power of a prime q > 2, find new parameters for which there exists a

1-parallelism in PG(n, q).
6. For k > 1 and any power of a prime q, starting with q = 2, find new parameters for

which there exists a k-parallelism in PG(n, q).
7. For and q and k > 1, find an infinite family of k-parallelisms in PG(n, q).
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