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Codes and Designs Related to Lifted MRD Codes
Tuvi Etzion, Fellow, IEEE, and Natalia Silberstein

Abstract—Lifted maximum rank distance (MRD) codes, which
are constant dimension codes, are considered. It is shown that a
lifted MRD code can be represented in such a way that it forms
a block design known as a transversal design. A slightly different
representation of this design makes it similar to a -analog of a
transversal design. The structure of these designs is used to obtain
upper bounds on the sizes of constant dimension codes which con-
tain a lifted MRD code. Codes that attain these bounds are con-
structed. These codes are the largest known constant dimension
codes for the given parameters. These transversal designs can also
be used to derive a new family of linear codes in the Hamming
space. Bounds on the minimum distance and the dimension of such
codes are given.

Index Terms—Constant dimension codes, Grassmannian space,
lifted maximum rank distance (MRD) codes, rank-metric codes,
transversal designs.

I. INTRODUCTION

L ET be the finite field of size . For two matrices
and over , the rank distance is defined by

A rank-metric code is a linear code, whose code-
words are matrices over ; they form a linear subspace
with dimension of , and for each two distinct codewords
and , we have that . For a rank-

metric code , it was proved in [10], [17], [35] that

(1)

This bound, called Singleton bound for the rank metric, is at-
tained for all feasible parameters. The codes which attain this
bound are called maximum rank distance codes (or MRD codes
in short).
Rank-metric codes have found application in public key

cryptosystems [18], space-time coding [32], authentication
codes [52], rank-minimization over finite fields [44], and
distributed storage systems [41]. Recently, rank-metric codes
also have found a new application in the construction of
error-correcting codes for random network coding [42]. For
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this application, the matrices are lifted into -dimensional
subspaces of [42] as described in the following.
Let be a matrix over and let be a identity

matrix. The matrix can be viewed as a generator matrix
of a -dimensional subspace of , and it is called the lifting
of [42].

Example 1: Let and be the following matrices over
:

Then, the subspace obtained by the lifting of is given by the
following eight vectors:

Given a nonnegative integer , the set of all -dimensional
subspaces of forms theGrassmannian space (Grassmannian
in short) over , which is denoted by . It is well known
that , where is the
-ary Gaussian coefficient.
A subset of is called an constant

dimension code if it has size and minimum subspace distance
, where the distance function in is defined by

for any two subspaces and in . will
denote the maximum size of an code.
Codes in the Grassmannian gained recently lot of interest

due to the work by Koetter and Kschischang [26], where they
presented an application of such codes for error correction in
random network coding. When the codewords of a rank-metric
code are lifted to -dimensional subspaces, the result is a con-
stant dimension code . If is an MRD code, then is called
a lifted MRD code [42]. This code will be denoted by .

Theorem 1: [42]: Let and be positive integers such that
. If is a MRD

code, then is an code.
In view of Theorem 1, we will assume throughout

this paper that . which is an
code will be also called an

. If no parameters for will be given, we
will assume it is an .
Most of the constructions for large constant dimension codes

known in the literature produce codes which contain
[13], [20], [33], [39], [42], [43], [48]. The only constructions
which generate codes that do not contain are given in
[15], [27] and [49]. These constructions are either of so-called
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orbit codes or specific constructions for small parameters.More-
over, only orbit codes (specifically cyclic codes)
with , and and codes are
the largest codes for their specific parameters which do not con-
tain [27]. This motivates the question, what is the largest
constant dimension code which contains ?
The well-known concept of -analogs replaces subsets by

subspaces of a vector space over a finite field and their orders
by the dimensions of the subspaces. In particular, the -analog
of a constant weight code in the Johnson space is a constant di-
mension code in the Grassmannian space. Related to constant
dimension codes are -analogs of block designs. -analogs of
designs were studied in [1], [7], [15], [16], [37] and [47]. For ex-
ample, in [1], it was shown that Steiner structures (the -analog
of Steiner systems), if exist, yield optimal codes in the Grass-
mannian. Another connection is the constructions of constant
dimension codes from spreads which are given in [15] and [33].
In this paper, we consider several topics related to lifted

MRD codes. First, we discuss properties of these codes related
to block designs. We prove that the codewords of form
a design called a transversal design, a structure which is known
to be equivalent to the well-known orthogonal array. We also
prove that the same codewords form a subspace transversal
design, which is akin to the transversal design, but not its
-analog.
The structure of as a transversal design leads to

the other results given in this paper. We derive for new
lower bounds on and upper bounds on the sizes
of error-correcting constant dimension codes which contain

. In particular, we prove that if an
code , , contains an code, then

We present a construction for codes that either attain this
bound or almost attain it for . These codes are the largest
known codes for .
We prove that if an code contains an

code, then

We present a construction for codes that attain this bound
when , , and for all . These codes are the largest
known for the related parameters.
The incidence matrix of the transversal design derived from

can be viewed as a parity-check matrix of a linear code in
the Hamming space. This way to construct a linear code from a
design is well known [2], [12], [23], [25], [28]–[30], [50], [51],
[55]. We find the properties of these codes, in particular, we
present the bounds on their minimum distance and dimension.
The rest of this paper is organized as follows. In Section II,

we present properties of lifted MRD codes. Then, we prove
that these codes form transversal designs in sets and subspaces.
In Section III, we discuss some known upper bounds on

and present two new upper bounds on the sizes of
constant dimension codes which contain . In Sections IV
and V, we provide constructions of two families of codes

that attain the upper bounds of Section III. In Section VI we
consider properties of linear codes whose parity-check matrices
are derived from . Conclusions and problems for future
research are given in Section VII.

II. LIFTED MRD CODES AND TRANSVERSAL DESIGNS

In this section, we prove that a liftedMRD code yields a com-
binatorial structure known as a transversal design. Moreover,
the codewords of these codes form the blocks of a new type of
transversal design, called a subspace transversal design. Based
on these designs, we will present some novel results in the fol-
lowing sections. We first examine some combinatorial proper-
ties of lifted MRD codes. Based on these properties, we will
construct the transversal designs.

A. Properties of Lifted MRD Codes

Let be the set of vectors of length over
in which not all the first entries are zeroes. The following

lemma is a simple observation.

Lemma 2: All the nonzero vectors that are contained in code-
words of an belong to .
For a set , let denote the subspace of spanned

by the elements of . If is of size one, then we denote
by . For and , we denote by

the concatenation of and . Let

be the set of all one-dimensional subspaces of
whose nonzero vectors are contained in . We identify

each subspace , for any given , with the vector
(of length ) in which the first nonzero entry is a one.

For each , we define

in other words, consists of all one-dimensional subspaces
whose restriction to the first coordinates is precisely .

contains sets, each one of the
size . These sets partition the set , i.e.,

and

We say that a vector is in if for

. Clearly, , for and
, contains a vector with leading zeroes. Such a vector

does not belong to , and hence, by Lemma 2, we have
the following.

Lemma 3: For each , a codeword of
contains at most one element from .
Note that each -dimensional subspace of contains

one-dimensional subspaces. Therefore, by

Lemma 2, each codeword of contains elements

of . Hence, by Lemma 3, and since , we
have the following.
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Corollary 1: For each , a codeword of
contains exactly one element from .

Lemma 4: Each -dimensional subspace of ,
whose nonzero vectors are contained in , is contained in
exactly one codeword of an .

Proof: Let

i.e., consists of all -dimensional subspaces of
in which all the nonzero vectors are contained in .
Since theminimum distance of is and its codewords

are -dimensional subspaces, it follows that the intersection of
any two codewords is at most of dimension . Hence, each

-dimensional subspace of is contained in at most
one codeword. The size of is , and the
number of -dimensional subspaces in a codeword

is exactly . By Lemma 2, each -dimen-

sional subspace, of a codeword, is contained in . Hence, the
codewords of contain exactly

distinct -dimensional subspaces of .
To complete the proof, we only have to show that does not

contain more -dimensional subspaces. Hence, we
will compute the size of . Each element of intersects with
each , in at most one one-dimensional sub-
space (since it contains vectors only from ). There are

ways to choose an arbitrary -dimensional

subspace of . For each such subspace, we choose a basis
, where each belongs to a different set

, (clearly, by previous definition, in each
such basis vector, the first nonzero entry is a one).
A basis for a -dimensional subspace of will be

generated by concatenation of with a vector for
each , .
Therefore, there are ways to choose a basis for

an element of . Hence, .

Thus, the lemma follows.

Corollary 2: For each , , each
-dimensional subspace of , whose nonzero vec-

tors are contained in , is contained in exactly
codewords of .

Proof: The size of is . The number
of -dimensional subspaces in a codeword is exactly

. Hence, the total number of -dimensional

subspaces in is (clearly, each

such -dimensional subspace is counted more than
once in this computation). Similarly to the proof of Lemma 4,
we can prove that the total number of -dimensional
subspaces that contain nonzero vectors only from is

. By simple symmetry, each two dif-

ferent such subspaces, containing nonzero vectors only from
, are contained in the same number of codewords of
. Thus, each -dimensional subspace of ,

whose nonzero vectors are contained in , is contained in
exactly

codewords of .

Corollary 3: Each one-dimensional subspace is
contained in exactly codewords of .
By applying Corollary 2 with , we also infer the

following result.
Corollary 4: Any two elements , such that

and , , are contained in ex-
actly codewords of .
For the following lemma, we need a generalization of the

definition of a rank-metric code to a nonlinear rank-metric code,
which is a subset of with minimum distance and size .
If , then such a code will
be also called an MRD code.

Lemma 5: can be partitioned into sets,
called parallel classes, each one of size , such that in each
parallel class, each element of is contained in exactly one
codeword.

Proof: First, we prove that a lifted MRD code contains a
lifted MRD subcode with disjoint codewords (subspaces). Let
be the generator matrix of a

MRD code [17], . Then, has the following form:

...
...

...

where are linearly independent over . If the last
rows are removed from , the result is an MRD sub-

code of with the minimum distance . In other words, an
MRD subcode of is obtained. The

corresponding lifted code is an lifted MRD
subcode of .
Let be the cosets

of in . All these cosets are nonlinear rank-metric
codes with the same parameters as the
MRD code. Therefore, their lifted codes form a partition of an

into parallel classes each one of
size , such that each element of is contained in exactly
one codeword of each parallel class.

B. Transversal Designs From Lifted MRD Codes

A transversal design of groupsize , blocksize , strength ,
and index , denoted by is a triple ,
where:
1) is a set of elements (called points);
2) is a partition of into classes (called groups), each
one of size ;

3) is a collection of -subsets of (called blocks);
4) each block meets each group in exactly one point;
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5) each -subset of points that meets each group in at most
one point is contained in exactly blocks.

When , the strength is usually not mentioned, and the
design is denoted by . A is resolvable
if the set can be partitioned into sets , where each
element of is contained in exactly one block of each . The
sets are called parallel classes.

Example 2: Let ; ,
where , , and

; , where
, , , ,

, , ,
, , ,
, , ,
, , and .

These blocks form a resolvable with four parallel
classes , ,

, and .

Theorem 6: The codewords of an form the

blocks of a resolvable transversal design ,
, with parallel classes, each one

of size .
Proof: Let be the set of points for the design.

Each set , , is defined to be a group, i.e., there

are groups, each one of size . The -dimensional sub-
spaces (codewords) of are the blocks of the design. By
Corollary 1, each block meets each group in exactly one point.
By Corollary 4, each 2-subset whichmeets each group in at most
one point is contained in exactly blocks. Finally,
by Lemma 5, the design is resolvable with parallel
classes, each one of size .

An array with entries from a set of elements
is an orthogonal array with levels, strength , and index ,
denoted by , if every subarray of
contains each -tuple exactly times as a row. It is known
[21] that a is equivalent to an orthogonal array

.
A MRD code is

a maximum distance separable (MDS) code if it is viewed
as a code of length over [17]. Thus, its codewords
form an orthogonal array

with , which is also an orthogonal array
with (see

[21] for the connection between MDS codes and orthogonal
arrays).
By the equivalence of transversal designs and orthogonal

arrays, and by Theorem 6, an code induces an

with .
These parameters are different from the ones obtained by
viewing an MRD code as an MDS code.
Now, we define a new type of transversal designs in terms of

subspaces, which will be called a subspace transversal design.
We will show that such a design is induced by the codewords of
a lifted MRD code. Moreover, we will show that this design is
useful to obtain upper bounds on the codes that contain the lifted

MRD codes, and in a construction of large constant dimension
codes.
Let be a set of one-dimensional subspaces in

that contains only vectors starting with zeroes. Note that
is isomorphic to .

A subspace transversal design of groupsize , ,
block dimension , and strength , denoted by ,
is a triple , where
1) is the subset of all elements of ,

(the points);

2) is a partition of into classes of size (the
groups);

3) is a collection of -dimensional subspaces which contain
only points from (the blocks);

4) each block meets each group in exactly one point;
5) each -dimensional subspace (with points from ) which
meets each group in at most one point is contained in ex-
actly one block.

An is resolvable if the set can be parti-
tioned into sets , where each one-dimensional sub-
space of is contained in exactly one block of each . The
sets are called parallel classes.
As a direct consequence from Lemma 4 and Theorem 6, we

infer the following theorem.

Theorem 7: The codewords of an form the
blocks of a resolvable , with the set of
points and the set of groups , , defined
previously in this section.

Remark 1: There is no known nontrivial -analog of a block
design with and . An is very close
to such a design.

Remark 2: An cannot exist if ,
unless . This is not difficult to prove and we leave it as an
exercise for the interested reader. Recall that the case
was not considered in this section (see Theorem 1).

III. UPPER BOUNDS ON THE SIZE OF CODES IN

In this section, we consider upper bounds on the size of con-
stant dimension codes. First, in Section III-A, we consider the
Johnson type upper bound presented in [14], [15], [52] and [53].
We estimate the size of known constant dimension codes rela-
tively to this bound. The estimations provide better results than
the ones known before, e.g., [26]. In Section III-B, we provide
new upper bounds on codes that contain lifted MRD codes. This
type of upper bounds was not considered before, even so, as said
earlier, usually the largest known codes contain the lifted MRD
codes.

A. Some Known Upper Bounds

Upper bounds on the sizes of constant dimension codes were
obtained in several papers, e.g., [26] and [42]. The following
upper bound was established in [52] in the context of linear au-
thentication codes and in [14], [15] and [53] based on anticodes
in the Grassmannian and as generalization of the well-known
Johnson bound for constant weight codes.
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TABLE I

Theorem 8:

(2)

It was proved recently [6] that for fixed , , and , the ratio
between the upper bound of Theorem 8 and equals 1
as . But the method used in [6] is based on probabilistic
arguments and an explicit construction of the related code is not
known. We will estimate the value of this upper bound

We define , . Similar analysis for
was considered in [26] and was considered also in

[19]. Since has codewords, we
have the following.

Lemma 9: The ratio between the size of an
and the upper bound on given in (2) satisfies

The function is increasing in and also in . In Table I,
we provide several values of for different and . For

, these values were given in [4].
One can verify that for large enough or for large enough,

the size of a lifted MRD code approaches the upper bound (2).
Thus, an improvement on the lower bound of is
mainly important for small minimum distance and small . This
will be the line of research in the following sections.
Note that the lower bound of Lemma 9 is not precise for small

values of . But it is better improved by another construction,
the multilevel construction [13]. For example, for , the
lower bound on the ratio between the size of a constant dimen-
sion code generated by the multilevel construction and
the upper bound on given in (2) is presented in
Table II. The values in the table are larger than the related values
in Table I. In the construction of such a code , we consider
only code and the codewords related to the following
three identifying vectors (see [13] or Section IV for the defi-
nitions) , , and

TABLE II
LOWER BOUNDS ON RATIO BETWEEN AND THE BOUND IN (2)

, which constitute most of the code.

But since not all identifying vectors were taken in the computa-
tions, the values in Table II are only lower bounds on the ratio,
rather than the exact ratio.

B. Upper Bounds for Codes Which Contain Lifted MRD Codes

In this section, we will derive upper bounds on the size of a
constant dimension code which contains the lifted MRD code

.
Let be a subspace transversal design derived from

by Theorem 7. Recall that is the set
of vectors of length over in which not all the
first entries are zeroes. Let be the set of vectors in

which start with zeroes. is isomorphic to ,

, and . Note that is
the set of one-dimensional subspaces of that contain
only vectors from . A codeword of a constant dimension
code, in , contains one-dimensional subspaces from

. Let be a constant dimension code
such that . Each codeword of contains
either at least two points from the same group of or only
points from , and hence, it contains vectors of .

Theorem 10: If an code , , con-
tains an , then

.
Proof: Let be an obtained from an

. Since the minimum distance of
is , it follows that any two codewords of intersect
in at most one one-dimensional subspace. Hence, each two-di-
mensional subspace of is contained in at most one code-
word of . Each two-dimensional subspace of , such that

, , , where ,
, is contained in a codeword of by Corollary 4

(or by Theorem 7). Hence, each codeword ei-
ther contains only points from or contains points from

and points from , for some . Clearly,
in the first case and

in the second case. Since and two codewords of
intersect in at most one-dimensional subspace, it follows that

each -dimensional subspace of can be contained
only in one codeword. Moreover, since the minimum distance
of the code is , it follows that if
and , then

. Therefore,
is an

code. Let be the set of code-
words in such that . For each
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, let be an arbitrary -dimensional subspace of

, and let (note that ). Since
, , and each two codewords of in-

tersect in at most one-dimensional subspace, it follows that the
code is an code. This
implies the result of the theorem.

Theorem 11: If an code con-
tains an , then

.

Proof: Let be an obtained from
an . Since the minimum distance of
is , it follows that any two codewords of intersect in at
most a -dimensional subspace. Hence, each -dimen-
sional subspace of is contained in at most one codeword
of . Each -dimensional subspace of , such that

, , where ,
for , and , , is con-
tained in a codeword of by Theorem 7. Hence, each
codeword has a nonempty intersection with
exactly groups of , for some , and there-

fore, . Let be the set of codewords
defined by if .
The set forms an code, and hence,

.
Let be a -dimensional subspace of . If and

are two codewords that contain , then . Let
be the number of codewords from which contain . Clearly,
for each , , we have

(3)

There are points in and each con-

tains exactly points from . Hence, each -dimen-

sional subspace of can be a subspace of at most

codewords of .
Therefore

where the equality is derived from (3).
One can easily verify that for

; recall also that ;
thus, we have

IV. CONSTRUCTIONS FOR CODES

In this section, we discuss and present a construction of codes
which contain an and attain the bound of The-
orem 10. Such a construction is presented only for and
large enough. If is not large enough, then codes obtained by
a modification of this construction almost attain the bound. In
any case, the codes obtained in this section are the largest ones
known for and .
For , the upper bound of Theorem 10 on the size of

a code that contains an is .
The construction which follows is inspired by the construction
methods described in [13] and [48]. The construction is based
on representation of subspaces by Ferrers diagrams, optimal
rank-metric codes, pending dots, and one-factorization of the
complete graph. The definitions and results of the first section
are taken from [13], [31], and [48].

A. Preliminaries for the Construction

1) Representation of Subspaces: For each rep-
resented by the generator matrix in reduced row echelon form,
denoted by , we associate a binary vector of length
and weight , , called the identifying vector of , where
the ones in are exactly in the positions where has
the leading coefficients (the pivots). All the binary vectors of
length and weight can be considered as the identifying vec-
tors of all the subspaces in . These vectors partition

into the different classes, where each class consists
of all subspaces in with the same identifying vector.
The Ferrers tableaux form of a subspace , denoted by
, is obtained from first by removing from each

row of the zeroes to the left of the leading coefficient;
and after that removing the columns which contain the leading
coefficients. All the remaining entries are shifted to the right.
The Ferrers diagram of , denoted by , is obtained from

by replacing the entries of with dots. Given
, the unique corresponding subspace can

be easily found.

Example 3: Let be the subspace in with the fol-
lowing generator matrix in reduced row echelon form:

Its identifying vector is , and its Ferrers
tableaux form and Ferrers diagram are given by

2) Lifted Ferrers Diagram Rank-Metric Codes: Let be
a Ferrers diagram with dots in the rightmost column and
dots in the top row. A code is an Ferrers diagram
rank-metric code if all codewords of are matrices in
which all entries not in are zeroes, it forms a rank-metric code
with dimension and minimum rank distance . The following
result is the direct consequence from Theorem 1 in [13].
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Lemma 12: Let , , , and let be an identi-
fying vector, of length and weight three, in which the leftmost
one appears in one of the first three entries. Let be the cor-
responding Ferrers diagram and be a Ferrers diagram
rank-metric code. Then, is at most the number of dots in ,
which are not contained in its first row.
A code which attains the bound of Lemma 12 will be called a

Ferrers diagram MRD code. A construction for such codes can
be found in [13].
For a codeword , let denote the part

of related to the entries of in . Given a Ferrers diagram
MRD code , a lifted Ferrers diagram MRD code is de-
fined as follows:

This definition is the generalization of the definition of a lifted
MRD code. The following lemma [13] is the generalization of
the result given in Theorem 1.

Lemma 13: If is an Ferrers diagram
rank-metric code, then its lifted code is an
constant dimension code.
3) Multilevel Construction and Pending Dots: It was

proved in [13] that for any two subspaces ,
we have , where de-
notes the Hamming distance; and if , then

. These properties of the
subspace distance were used in [13] to present a multilevel con-
struction, for a constant dimension code . In this construction,
first a binary constant weight code of length , weight , and
minimum Hamming distance is chosen. The codewords of
will serve as the identifying vectors for . For each identifying
vector, a corresponding lifted Ferrers diagram MRD code with
minimum rank distance is constructed. The union of these
lifted Ferrers diagram MRD codes is an code.
In the construction which follows, for , we also use a

multilevel method, i.e., we first choose a binary constant weight
code of length , weight , and minimum Hamming
distance . For each codeword in , a corresponding
lifted Ferrers diagramMRD code is constructed. However, since
for some pairs of identifying vectors the Hamming distance is 2,
we need to use appropriate lifted Ferrers diagramMRD codes to
make sure that the final subspace distance of the code will be 4.
For this purpose, we use a method based on pending dots in a
Ferrers diagram [48].
The pending dots of a Ferrers diagram are the leftmost

dots in the first row of whose removal has no impact on the
size of the corresponding Ferrers diagram rank-metric code. The
following lemma follows from [48].

Lemma 14 [48]: Let and be two subspaces in
with , such that the leftmost one of

is in the same position as the leftmost one of . Let
and be the sets of pending dots of and , respectively.
If and the entries in (of their Ferrers
tableaux forms) are assigned with different values in at least one
position, then .

Example 4: Let and be subspaces in which are
given by the following generator matrices:

where , and the pending dots are emphasized
by circles. Their identifying vectors are
and . Clearly, , while

.
4) One-Factorization of Complete Graphs: A matching in a

graph is a set of pairwise disjoint edges of . A one-factor
is a matching such that every vertex of occurs in exactly one
edge of the matching. A partition of the edge set in into one-
factors is called a one-factorization. Let be a complete graph
with vertices. The following lemma is a well-known result
[31, p. 476].

Lemma 15: has a one-factorization for all .
A near-one-factor in is a matching with edges

that contain all but one vertex. A set of near-one-factors that
contains each edge in precisely once is called a near-
one-factorization. The following corollary is the direct conse-
quence from Lemma 15.

Corollary 5: has a near-one-factorization for all .

Corollary 6: Let be a set of all binary vectors of length
and weight 2.
1) If is even, can be partitioned into classes, each
one has vectors with pairwise disjoint positions of ones;

2) If is odd, can be partitioned into classes, each one
has vectors with pairwise disjoint positions of ones.

B. First Construction

Construction I: Let and for odd
(or for even ).
1) Identifying Vectors: The identifying vector

corresponds to the lifted MRD code . The
other identifying vectors are of the form , where is of
length 3 and weight one, and is of length and weight
two. We use all the vectors of weight two in the last
coordinates of the identifying vectors. By Corollary 6, there is a
partition of the set of vectors of length and weight 2 into

classes if is even (or into classes if
is odd), . We define

2) Ferrers Tableaux Forms and Pending Dots: All the Fer-
rers diagrams which correspond to the identifying vectors from
have one common pending dot in the first entry of the first
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row. We assign the same value of in this entry of the Ferrers
tableaux form for each vector in the same class. Two subspaces
with identifying vectors from different classes of have dif-
ferent values in the entry of this pending dot. This is possible
since the number of classes in is at most . On the remaining
dots of Ferrers diagrams, we construct Ferrers diagram MRD
codes and lift them.
Similarly, all the Ferrers diagrams, which correspond to the

identifying vectors from , have two common pending dots in
the first two entries of the first row. We assign the same value
of in these two entries in the Ferrers tableaux form for each
vector in the same class. Two subspaces with identifying vectors
from different classes of have different values in at least one
of these two entries. This is possible since the number of classes
in is at most . On the remaining dots of Ferrers diagrams,
we construct Ferrers diagram MRD codes and lift them.
Finally, we lift Ferrers diagrams MRD codes which corre-

spond to the identifying vectors of .
3) Code: Our code is a union of and the lifted codes

corresponding to the identifying vectors in , , and .

Example 5: For , there are different binary vec-
tors of length and weight 2. We partition these
vectors into five disjoint classes ,

, ,
, . The

identifying vectors of the code, besides , are
partitioned into three sets

To demonstrate the idea of the construction, we will only con-
sider the set . The generator matrices in reduced row echelon
form of the codewords with identifying vectors from are of
four different types

where all the ’s are elements from . The suffixes (last
coordinates) of the identifying vectors of the first two generator
matrices belong to , and of the last two matrices to . All
these matrices have the same pending dot in the place of ,

. Then, we assign 0 in this place for the two first
matrices and 1 in this place for the two last matrices

4) Analysis of the Construction:

Theorem 16: For satisfying , where

the code obtained in Construction I attains the bound of The-
orem 10.

Proof: First, we prove that the minimum subspace distance
of is 4. Let , . We distinguish between three
cases.
• Case 1: If , then since the
minimum distance of the is 4.

• Case 2: If and , then
.

• Case 3: Assume .
If , , , then clearly

.
If , i.e., and have identifying vectors

, , where is of length 3, we
distinguish between two additional cases.
— , . In this case,
which implies .

— , , . If ,
then . If , then by
Lemma 14, we have that .

Next, we calculate the size of . Recall that the identi-
fying vectors are partitioned into classes. Note that since

, it follows that each one of the vectors
of weight 2 and length is taken as the suffix of some
identifying vector. Each such suffix (of length and weight
2) is the identifying vector of a subspace in .
By Lemma 12, each such subspace in is con-
tained in exactly one codeword (since the first row of the
generator matrix of the three-dimensional subspace is omitted
by the lemma for the bound on ). The size of is

and the size of is . Hence, the

size of is . Theorem 10 implies that for

code , which contains an , we
have .
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Remark 3: A code whose size attains the upper
bound of Theorem 10was constructed in [13] and a
code whose size attains this bound was constructed in [48].

C. Second Construction

For small alphabets, Construction I is modified as follows.
Construction II: Let and for odd

(or for even ).
The identifying vector corresponds to the

lifted MRD code . Let and

. For each other identifying vector, we partition the
last coordinates into or sets, where each one of the
first sets consists of consecutive coordinates and
the last set (which exists if ) consists of
consecutive coordinates. Since is always an even
integer, it follows from Corollary 6 that there is a partition of
vectors of length and weight 2, corresponding to the
set, , into classes .

We define
,

, and
, where denotes the zeroes

vector of length . Let

The identifying vectors (excluding ), of the code that we
construct, are partitioned into the following three sets:

As in Construction I, we construct a lifted Ferrers diagram
MRD code for each identifying vector, by using pending dots.
Our code is a union of and the lifted codes corre-
sponding to the identifying vectors in , , and .

Remark 4: The identifying vectors with two ones in the last
entries can also be used in Construction II, but their contribution
to the final code is minor.
In a similar way to the proof of Theorem 16, one can

prove the following theorem, based on the fact that the
size of the lifted Ferrers diagram MRD code obtained from
the identifying vectors in , , is

.

Theorem 17: For satisfying , where

TABLE III
RATIO BETWEEN AND THE BOUND IN (2)

Construction II generates an constant dimension

code with ,

which contains an .
For all admissible values of , the ratio

, for the code generated by
Construction II, is greater than 0.988 for and 0.999 for

. Hence, the code almost attains the bound of Theorem 10.
In the following table, we compare the size of codes obtained

by Constructions I and II (denoted by ) with the size of the
largest previously known codes (denoted by ) and with the
upper bound (2) (for ).

The new ratio between the new best lower bound and the
upper bound (2) with and is presented in Table III.
One should compare it with Table II.

V. CONSTRUCTION FOR CODES

In this section, we introduce a construction of
codes that attain the upper bound of Theorem 11, and are the
largest codes with these parameters. This construction is based
on 2-parallelism of subspaces in .
A -spread in is a set of -dimensional subspaces

which partition (excluding the all-zero vector). We say that
two subspaces are disjoint if they have only trivial intersection.
A -spread in exists if and only if divides [37].
Clearly, a -spread is a constant dimension code in
with the maximal possible minimum distance . A par-
tition of all -dimensional subspaces of into disjoint
-spreads is called a -parallelism. The following construction
is presented for .
Construction III: Let be an obtained from an

. We will generate a new code that contains
. The following new codewords (blocks) will form the

elements of .
Let be a partition of all the subspaces of

into seven 2-spreads, each one of size 5, i.e., a
well-known 2-parallelism in [3], [5], [54]. For each
, , and each two subspaces ( can
be equal to ), we write and

, where , ,
and . The two-dimensional subspace has four
cosets in . We construct the following
four codewords in . The codewords are defined
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TABLE IV
PARTITION OF

by 15 nonzero vectors which are the nonzero vectors of a
four-dimensional subspace as can be verified

(C.1)

(C.2)

(C.3)

(C.4)

In , there are two-dimensional subspaces,
and hence there are 35 different choices for . Since the size of
a spread is 5, it follows that there are five different choices for
. Thus, there are a total of codewords in

generated in this way. In addition to these 700 code-
words, we add a codeword that contains all the points of .

Example 6: Apartition of into seven spreads is given
in Table IV, where each row corresponds to a spread.
We illustrate the idea of Construction III by considering

one 2-spread and a coset of one element of the spread. Let
be a spread given by the first row of

the table, i.e., , ,
, ,

. The four cosets of are given by

For the pair , , the following four subspaces , , ,
and , belong to the code and correspond to the four types of
the codewords, where corresponds to , , and
for every coset of we use a different color.

Theorem 18: Construction III generates an
constant dimension code that attains the bound of

Theorem 11 and contains an .
Proof: First, we observe that the four types of codewords

given in the construction are indeed four-dimensional subspaces
of . Each one of the codewords contains 15 different one-
dimensional subspaces, and hence, each codeword contains 15
different nonzero vectors of . It is easy to verify that all these
vectors are closed under addition in , thus each constructed
codeword is a four-dimensional subspace of .
To prove that for each two codewords , we have

, we distinguish between three cases.
• Case 1: . Since the minimum distance of

is 4, we have that .
• Case 2: and . The code-
words of form the blocks of an , ,
and hencemeet each group in exactly one point. Each code-
word of meets exactly three groups of . Hence,

for each and ,
therefore, .

• Case 3: . If and have exactly
three points in common in (which correspond to a
two-dimensional subspace contained in ), then they
are disjoint in all the groups of . This is due to the fact that
the points of in and the point of in correspond
to either different cosets, or different blocks in the same
spread. If and have exactly one point in common in

, then they have at most two points in common in at
most one group of . Thus, .

contains codewords. As explained in the
construction, there are 701 codewords in . Thus, in
the constructed code , there are codewords.
Thus, the code attains the bound of Theorem 11.

Remark 5: Construction III can be easily generalized for all
prime powers , since there is a 2-parallelism in
for all such , where is power of 2 [5]. Thus, from this con-
struction, we can obtain a code with

, since the size of a 2-spread in is
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and there are different cosets of a two-dimensional
subspace in .
In the following table, we compare the size of codes obtained

by Construction III and its generalizations for large (denoted
by ) with the size of the largest previously known codes
(denoted by ) and with the upper bound (2) (for and

).

Remark 6: In general, the existence of -parallelism in
is an open problem. It is known that 2-parallelism

exists for and all [3], [54], and for each prime power
, where is power of 2 [5]. There is also a 3-parallelism for

and [36]. Thus, we believe that Construction III
can be generalized to a larger family of parameters assuming
that there exists a corresponding parallelism.

VI. LINEAR CODES DERIVED FROM LIFTED MRD CODES

A lifted MRD code and the transversal design derived from
it can also be used to construct a linear code in the Hamming
space. In this section, we study the properties of such a linear
code, whose parity-check matrix is an incidence matrix of a
transversal design derived from a lifted MRD code. Some of
the results presented in this section generalize the results given
in [24]. In particular, the lower bounds on the minimum dis-
tance and the bounds on the dimension of codes derived from
lifted MRD codes with coincide with the bounds
on low-density parity-check (LDPC) codes from partial geome-
tries considered in [24]. Nevertheless, our goal in this section is
to discuss the properties of the linear codes without taking into
account that some of them can be used as LDPC codes.
For each codeword of an , we define its

binary incidence vector of length as follows:
if and only if the point (one-dimensional subspace)
is contained in .

Let be the binary matrix whose rows are the
incidence vectors of the codewords of . By Theorem 6,
this matrix is the incidence matrix of a ,
with . Note that the rows of the incidence
matrix correspond to the blocks of the transversal design,
and the columns of correspond to the points of the transversal
design. If in such a design (or, equivalently,
for ), then is an incidence matrix of a net, the dual
structure to the transversal design [31, p. 243].
An linear code is a linear subspace of dimension

of with minimum Hamming distance . Let be the linear
code with the parity-check matrix , and let be the linear
code with the parity-check matrix .
The code has length and the code has

length . By Corollary 3, each column of has
ones; since each -dimensional subspace contains

one-dimensional subspaces, each row has ones.

Remark 7: Note that if , then the column weight of
is one. Hence, the minimum distance of is 2. Moreover,
consists only of the all-zero codeword. Thus, these codes are not
interesting, and hence, in the sequel, we assume that .

Lemma 19: The matrix obtained from an
code can be decomposed into blocks, where each block is a

permutation matrix.
Proof: It follows from Lemma 5 that the related transversal

design is resolvable. In each parallel class, each element of
is contained in exactly one codeword of . Each class has

codewords, each group has points, and each code-
word meets each group in exactly one point. This implies that
the rows of related to each such class can be decom-
posed into permutation matrices.

Example 7: A code and a code are
obtained from the liftedMRD code . The in-
cidence matrix for corresponding transversal design
(see Example 2) is given by the following 16 12 matrix. The
four rows above this matrix represent the column vectors for the
points of the design.

Corollary 7: All the codewords of code , associated with
the parity-check matrix , and of code , associated with the
parity-check matrix , have even weights.

Corollary 8: The minimum Hamming distance of and
the minimum Hamming distance of are upper bounded
by .
To obtain a lower bound on the minimum Hamming distance

of these codes, we need the following theorem known as the
Tanner bound [45].

Theorem 20: The minimum distance of a linear code
defined by an parity-check matrix with constant row
weight and constant column weight satisfies:

T1:

T2:

where is the second largest eigenvalue of .
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To obtain a lower bound on and , we need to find the
second largest eigenvalue of and , respectively.
Note that since the set of eigenvalues of and the set of
eigenvalues of are the same, it is sufficient to find only
the eigenvalues of .
The following lemma is derived from [9, p. 563].

Lemma 21: Let be an incidence matrix for .
The eigenvalues of are , , and with multi-
plicities , and , respectively, where is a number
of blocks that are incident with a given point.
By Corollary 3, in with

. Thus, from Lemma 21, we obtain the spec-
trum of .

Corollary 9: The eigenvalues of are ,

, and 0 with multiplicities 1, , and

, respectively.
Now, by Theorem 20 and Corollary 9, we have

Corollary 10:

Proof: By Corollary 9, the second largest eigenvalue of
is .We apply Theorem 20(T1) to obtain

By using Theorem 20, we also obtain lower bounds on

(4)

(5)

Note that the expression in (4) is negative for .
For with and , the bound in (4)
is larger than the bound in (5). Thus, we have , if

, and ; and ,
otherwise.

We use the following result derived from [25, Th. 1] to im-
prove the lower bound on .

Lemma 22: Let be an incidence matrix of blocks (rows)
and points (columns) such that each block contains exactly
points, and each pair of distinct blocks intersects in at most
points. If is a minimum distance of a code with the parity-
check matrix , then

Corollary 11: .

Proof: By Lemma 22, with and ,
since any two codewords in a lifted MRD code intersect in

at most -dimensional subspace, we have the following
lower bound on the minimum distance of :

Obviously, for all , this bound is larger or equal than
the bound of Corollary 10, and thus, the result follows.

Let and be the dimensions of and ,
respectively. To obtain the lower and upper bounds on
and , we need the following basic results from linear
algebra [22]. For a matrix over a field , let denote
the rank of over .

Lemma 23: Let be a matrix, and let be the field of
real numbers. Then
1) .
2) If and is a symmetric matrix with the eigen-
value 0 of multiplicity , then .

Theorem 24:

Proof: First, we observe that
, and .

Now, we obtain an upper bound on
. Clearly, . By

Corollary 9, the multiplicity of an eigenvalue 0 of
is . Hence, by Lemma 23,

. Thus,

,

and .

Now, we obtain an upper bound on the dimension of the codes
and for odd .

Theorem 25: Let be a power of an odd prime number.
1) If is odd, then and

.

2) If is even, then and

.

Proof: We compute the lower bound on to
obtain the upper bound on the dimension of the codes and
. First, we observe that . By

[8], the rank over of an integral diagonalizable square ma-
trix is lower bounded by the sum of the multiplicities of the
eigenvalues of that do not vanish modulo 2. We consider
now . By Corollary 9, the second eigenvalue of

is always odd for odd . If is odd, then the first
eigenvalue of is also odd. Hence, we sum the multiplic-
ities of the first two eigenvalues to obtain

. If is even, then the first eigenvalue
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is even, and hence, we take only the multiplicity of the second
eigenvalue to obtain . The
result follows now from the fact that the dimension of a code is
equal to the difference between its length and .

Remark 8: For even values of , the method used in
the proof for Theorem 25 leads to a trivial result, since
in this case, all the eigenvalues of are even and
thus, by [8], we have . But clearly, by
Lemma 19, we have . Thus, for even ,

and
.

Note that for odd and odd , the lower and the upper
bounds on the dimension of and are the same. Therefore,
we have the following corollary.

Corollary 12: For odd and odd , the dimensions
and of the codes and , respec-

tively, satisfy , and

.
Finally, and can also be viewed as LDPC codes ob-

tained from designs [2], [23]–[25], [28]–[30], [46], [50], [51],
[55]. Some preliminary results in this direction can be found
in [38] and [40]. The performance of LDPC codes based on
transversal designs, in an additive white Gaussian noise channel
using sum–product decoding algorithm, was studied in [24].
The codes presented in [24] correspond to our code , where

. It was shown [24] that the codes with column
weight three have a significant improvement in their decoding
performance over random codes with the same length and rate.
Moreover, when compared to the codes of the same length based
on finite geometries [28], the codes from transversal designs
have a higher rate and a lower decoding complexity at larger
signal-to-noise ratios [24]. Finally, only in this case , the
girth of the corresponding graph is 6, while in the other cases,
the girth is 4, which is generally an unwanted property for LDPC
codes.

VII. CONCLUSION AND FUTURE RESEARCH

Lifted MRD codes are considered. Properties of these codes,
especially when viewed as transversal designs are proved.
Based on this design, new upper bounds and constructions for
constant dimension codes which contain lifted MRD codes
as subcodes are given. The incidence matrix of the design
(which represents also the codewords of the lifted MRD code)
is considered as a parity-check matrix of a linear code in the
Hamming space. Properties of these linear codes are proved.
We conclude with a list of open problems for future research.
1) What are the general upper bounds on a size of an

code which contains a lifted MRD code?
2) Are the upper bounds of Theorems 10 and 11 and related
bounds for other parameters attained for all parameters?

3) Can the codes constructed in Constructions I, II, and III
be used, in a recursive method, to obtain new bounds on

for larger ?
4) One of the main research problems is to improve the lower
bounds on , with codes which do not contain

the lifted MRD codes. Only such codes can close the gap
between the lower and the upper bounds on
for small and small (e.g., the seven codes for
mentioned in Section I).

5) We did not check the linear codes obtained from lifted
MRD codes as LDPC codes. It is intriguing to find which
properties have LDPC codes obtained from lifted MRD
codes? The bounds given in Section VI can be of help in
this direction. In addition, we would like to know the per-
formance of these codes with various decoding algorithms
[11], [34].
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