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The Asymptotic Behavior of Grassmannian Codes
Simon R. Blackburn, Member, IEEE, and Tuvi Etzion, Fellow, IEEE

Abstract—The iterated Johnson bound is the best known upper
bound on the size of an error-correcting code in the Grassmannian

. The iterated Schönheim bound is the best known lower
bound on the size of a covering code in . We prove that
both bounds are asymptotically attained for xed and xed ra-
dius, as approaches in nity. Our methods rely on results from
the theory of quasi-random hypergraphs which are proved using
probabilistic techniques. We also determine the asymptotics of the
size of the best Grassmannian codes and covering codes when
and the radius are xed, as approaches in nity.

Index Terms—Constant dimension code, covering bound, Grass-
mannian, hypergraph, packing bound.

I. INTRODUCTION

L ET be the nite eld of order and let and be in-
tegers such that . The Grassmannian

is the set of all -dimensional subspaces of . We have that

where is the -ary Gaussian binomial coef cient. A nat-
ural measure of distance in is the subspace metric [1],
[17] given by

for . We say that is an
code in the Grassmann space if and
for all distinct . Such a code is

also called a constant dimension code. The subspaces in are
called codewords. (Note that the distance between any pair of
elements of is even. Because of this, some authors
de ne the distance between subspaces and as .)
An important observation is the following: a code in the
Grassmann space has minimum distance or
more if and only if each subspace in is contained
in at most one codeword.
There is a “dual” notion to a Grassmannian code, known as

a -covering design: we say that is a -covering
design if each element of is contained in
at least one element of . If each element of is con-
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tained in exactly one element of , we have a Steiner structure,
which is both an optimal Grassmannian code and an optimal
-covering design [12], [22]. Codes and designs in the Grass-
mannian have been studied extensively in the last ve years due
to the work by Koetter and Kschischang [17] in random net-
work coding, who showed that an code can cor-
rect any packet insertions and any packet erasures, as long
as . Our goal in this paper is to examine cases in
which we can determine the asymptotic behavior of codes and
designs in the Grassmannian.
Let denote the maximum number of codewords

in an code. The packing bound is the best known
asymptotic upper bound for . If we write ,
we have

(1)

This bound is proved by noting that in an
code, each -dimensional subspace can be contained in at
most one codeword. Bounds on were given in many
papers, e.g., [9]–[12], [17], [18], [25], [28], [29], In particular,
the well-known Johnson bound for constant weight codes was
adapted for constant dimension codes independently in [11],
[12], and [29] to show that

By iterating this bound, using the observation that
for all , we obtain the iterated Johnson bound

It is not dif cult to see that the iterated Johnson bound is always
stronger than the packing bound (indeed, the packing bound
may be derived as a simple corollary of the iterated Johnson
bound). However, the main goal of this paper is to prove that the
packing bound (and so the iterated Johnson bound) is attained
asymptotically for xed and , , when tends to in nity.
In other words, we will prove the following theorem, in which
the term means that .

Theorem 1: Let , , and be xed integers, with
and such that is a prime power. Then

(2)

as .
In fact, the proof of our theorem shows a little more than this:

see the proof of the theorem and the comment in the last section
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of this paper. Our proof of the lower bound relies on proba-
bilistic results from the theory of quasi-random hypergraphs,
and so does not produce explicit codes. We remark that the
theory of quasi-random hypergraphs has been used previously
in coding theory, to establish the existence of classes of error
correcting codes that are larger than the Gilbert–Varshamov
bound (see [16], [24], and [27]).
There are known explicit constructions that produce codes

whose size is within a constant factor of the packing bound as
. Currently, the best codes known are the codes of Etzion

and Silberstein [9] that are obtained by extending the codes of
Silva et al. [23] using a “multilevel construction.” If
and , then the ratio between the size of the code and
the packing bound is 0.6657, 0.6274, and 0.625 when ,

, and respectively, as tends to in nity. When
, the ratio of 0.7101 in [23] was improved in [10] to

0.7657. The Reed–Solomon-like codes of [17] represented as
a lifting of codewords of maximum rank distance codes [23]
approach the packing bound as when one of or
also tends to in nity [10, Lemma 19]. Theorem 1 shows that
there exist codes approaching the packing bound as
even when and are xed; of course, the challenge is now to
construct such codes explicitly.
This paper also proves a similar result for -covering de-

signs. Let denote the minimum number of -dimen-
sional subspaces in a -covering design . Bounds on

can be found in [8] and [13]. Setting , the
covering bound states that

(3)

This boundmay be proved by observing that in a
covering design each -dimensional subspace must be

contained in at least one codeword. The Schönheim bound is an
analogous result to the Johnson bound above

This bound implies the iterated Schönheim bound [13]

(4)
The iterated Schönheim bound is always at least as strong as the
covering bound. But the following theorem shows that when
and are xed with the covering bound (and so the
iterated Schönheim bound) is attained asymptotically:

Theorem 2: Let , , and be xed integers, with
and such that is a prime power. Then

as .
The proof of the theorem does not explicitly construct

families of -designs whose ratio with the covering bound

approaches 1. The relationship between the best known -cov-
ering designs and the covering bound is more complicated
than in the case of Grassmannian codes, but it is usually the
case that better ratios can be obtained by explicit constructions
of -covering designs when compared to the corresponding
problem for Grassmannian codes. For example, a ratio of 1.05
can be obtained by explicit constructions [8] when ,

, and , as .
The asymptotics of when and are
xed, and of when and are xed, are also
determined in this paper. The result for is a
simple corollary of Theorem 1, whereas the result for
follows from results in nite geometry.
The rest of this paper is organized as follows. In Section II,

we will present the proofs for our main theorems. In Section III,
we consider the case when is xed as . Finally, in
Section IV, we provide comments on our results, and state some
open questions.

II. PROOFS OF THE MAIN THEOREMS
We begin by observing a simple relationship between the

minimum size of a -covering design and the maximum size
of a Grassmannian code.

Proposition 1: We have that

and

In particular, Theorems 1 and 2 are equivalent.
Proof: Let be a Grassmannian code of size
. There are exactly subspaces of

dimension that lie in some element of , since no sub-
space of dimension is contained in more than one element
of . Thus, there are
uncovered subspaces of dimension , and we may construct
a -covering design by adding or fewer -dimensional sub-
spaces to . This establishes the rst inequality of the proposi-
tion.
To establish the second inequality, let be a covering

design of size . There are
pairs such that , and .
Suppose we order these pairs in some way. Since every

dimensional subspace occurs at least once as the rst
element of a pair, there are pairs

where a pair for some occurs earlier in
the ordering. Removing the corresponding subspaces from
produces a Grassmannian code of size at least

, and so the second inequality
follows.
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Suppose Theorem 1 holds. Let be a xed prime power, and
let and be xed integers such that . Then (2)

implies that

and so the rst inequality of the proposition implies that

Theorem 2 now follows from this asymptotic inequality and the
covering bound (3).
The proof that Theorem 1 follows from Theorem 2 is similar

to the above, and is omitted.

We prove Theorem 1 by using a result in quasi-random hyper-
graphs. To state this result, we begin by recalling some termi-
nology from hypergraph theory. A hypergraph is -uniform
if all its hyperedges have cardinality . The degree of
a vertex is the number of hyperedges containing ; if

for all , we say that is -regular. The code-
gree of a pair of distinct vertices is the
number of hyperedges containing both and . A matching
(or edge packing) in is a set of pairwise disjoint hyperedges
of . We write for the minimum number of vertices left
uncovered by a matching in . Thus the largest number of hy-
peredges in a matching of an -uniform hypergraph on ver-
tices is . The main theorem we use is due to [26,
Th. 1.2.1]:

Theorem 3: Let be a xed integer, where . Then,
there exist constants and with the following property. Let
be an -uniform -regular hypergraph with vertices. De ne

, where the maximum is taken over all
distinct vertices . Then

The proof of Theorem 3 uses probabilistic methods, inspired
by the techniques of Frankl and Rödl [15], [21]. See [2], [3], and
[20] for related work.
Proof of Theorem 1: If , then the set of all subspaces in

the Grassmannian is a code that achieves the packing bound;
if then any single subspace of dimension achieves
the packing bound. So we may assume that . Now
suppose that , so . The theorem follows in this case
since it is known [12] that if is even; and

if is odd. Thus we may suppose
that .
De ne a hypergraph as follows. We identify the set of

vertices of with , and the set of hyperedges of

with . We de ne a hyperedge to contain a vertex if
and only if (as subspaces). We note that
is exactly the maximum size of a matching in .
Now is an -uniform hypergraph, where .

Note that , and does not depend on . Every vertex of
has degree . Let and be distinct

vertices, so for some positive in-
teger . Then, is the number of dimensional
subspaces containing , which is at most the number of
-dimensional subspaces containing a -dimensional
subspace of . So

But

and so . Theorem
3 now implies that there exists an integer such that

Thus, , and so the largest matching in

contains at least edges. The packing bound

shows that the largest matching in has size at most ,

and so , as required.

Proof of Theorem 2: Theorem 2 immediately follows from
Proposition 1 and Theorem 1.

III. CASE OF LARGE

In the previous section, we assumed that is xed (and there-
fore is small when compared to ). In this section, we consider
the “dual” case, where is assumed to be xed (and so
is large).
It is proved in [12], [17], and [29] that

. (This holds because taking the duals of all
subspaces in an code in the Grassmann space pro-
duces an -code.) Thus, we have the following
corollary of Theorem 1, which establishes the asymptotics of

when and are xed with .

Corollary 1: Let , , and be xed integers such that
, and such that is a prime power. Then

as .
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Note that when we have that
, so the restriction on in Corollary 1 is a

natural one.
The same techniques do not establish a similar result for
-covering designs, since and are not
equal in general. However, by translating some of the results
known in nite geometry into our language, we can determine

when , , and are xed, as Theorem 6 shows.
For the proof of the theorem will need the notion of a
-Turán design. We say that is a -Turán design

if each element of contains at least one
element of . Let denote the minimum number of
-dimensional subspaces in a -covering design .
The notions of -covering designs and -Turán designs are
dual; the following result was proved in [13]:

Theorem 4: for all
.

Using normal spreads [19] (also known as geometric spreads)
Beutelspacher and Ueberberg [5] proved the following theorem
using some of the theory of nite projective geometry.

Theorem 5: for
all and .
We remark that Beutelspacher and Ueberberg show much

more that there is essentially only one optimal construction for
a -Turán design with these parameters.
As a consequence from Theorems 1 and 5, we obtain the fol-

lowing result for -covering designs.

Corollary 2: Let and be positive integers such that
divides . Then

Proof: Theorems 4 and 5 (in the case when ) show
that

for any integers and . If we set
and , the corollary follows except in the case when

and . But the corollary is true in this case also, as a
-covering design with these parameters must consist of all 1-D
subspaces.

Theorem 6: Let integers , , and be xed, where is a
prime power. For all suf ciently large integers

Proof: We rst note that

(5)

This is proved in [13]. To see why (5) holds, x a 1-dimen-
sional subspace of an -dimensional vector space .
Let be a -covering design contained in the
-dimensional space . Then the set of subspaces such
that and is a -covering design

containing at most sub-
spaces.
Inequality (5) implies that for any xed and , we have that

is a nonincreasing sequence of positive integers
as increases. So there exists a constant (depending only on
, and ) so that whenever is suf ciently
large. It remains to show that .
Set , so . Corollary 2

implies that

Now is bounded below by the Schönheim bound (4). We
give a simpler form for the Schönheim bound that holds for all
suf ciently large as follows. When is suf ciently large, we
nd that

Moreover, for such that

provided that is suf ciently large. These equalities show that
the right hand side of the Schönheim bound (4) is equal to

for all suf ciently large integers . So
, as required.

IV. OPTIMAL CODES AND RESEARCH DIRECTIONS

In this section, we comment on our results, we provide a little
extra background, and we propose topics for further study.
We have proved that for a given , if we x , and , where

, the packing bound for Grassmannian codes is asymp-
totically attained when tends to in nity. We commented in
Section I that the same is true when or grows. In Section III,
we determined the asymptotics of when
and are xed. These results do not address the cases when
and are xed, but and both grow (for example when

for some xed real number ). Can similar
results be obtained a wide range of these cases? When grows
rather slowly when compared to , it should be possible to use
a result of Alon et al. [2] to show that still ap-
proaches the packing bound.
The proof of Theorem 1 does not just give the leading term

of : the order of the error term is also given.
However, we do not see any reason why this error term is tight.
Similar questions can be asked about the relationship between

the covering bound and . It seems that small -cov-
ering designs are easier to construct than large Grassmannian
codes; certainly there are more construction methods currently
known [8], [13].
As well as trivial cases, there are a few sets of parameters for

which the exact (or almost the exact) values of and
are known. Section III discusses a family of optimal

-covering designs. A family of optimal Grassmannian codes
is known when . Spreads (from projective geometry)
give rise to optimal codes as well as -covering designs when
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divides . Known partial spreads of maximum size give rise to
optimal codes in other cases [4], [6], [7], [14].
For small parameters, the best known codes are very

often cyclic codes, which are de ned as follows. Let
be a primitive element of . We say that a code

is cyclic if it has the following property: when-
ever is a codeword of , so is its cyclic
shift . In other words, if we map
each subspace into the corresponding binary character-
istic vector given by

then the set of all such characteristic vectors is closed under
cyclic shifts. It would be very interesting to nd out whether
cyclic codes approach the packing bound and the covering
bound asymptotically. Again, in this case, we would like to
see proofs similar to the ones of Theorems 1 and 2. Of course,
explicit families of asymptotically good cyclic codes would be
even more worthwhile.
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