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The Positive Capacity Region of Two-Dimensional
Run-Length-Constrained Channels

Keren Censor and Tuvi Etzion, Fellow, IEEE

Abstract—A binary sequence satisfies a one-dimensional (d; k) con-
straint if every run of zeros (with possible exception of the first and the
last runs) has length at least d and at most k. A binary two-dimensional
array satisfies a (d; k) constraint if each row and each column satisfies the
one-dimensional (d; k) constraint. Few models have been proposed in the
literature to handle two-dimensional data: the diamond model, the square
model, the hexagonal model, and the triangular model. The constraints
in the different directions might be asymmetric and hence many kind
of constraints are defined depending on the number of directions in the
model. For example, a two-dimensional array in the diamond model satis-
fies a (d ; k ; d ; k ) constraint if it satisfies the one-dimensional (d ; k )
constraint horizontally and the one-dimensional (d ; k ) constraint verti-
cally. In this correspondence, the region in which the capacity is zero or
positive, in the various models, is examined. Asymmetric constraints in
the diamond model and symmetric constraints in the other models are
considered. In particular, an almost complete solution for asymmetric
constraints in the diamond model is provided.

Index Terms—Asymmetric constraints, capacity, constrained codes, dia-
mond model, hexagonal model, permutation arrays, square model, tiling,
triangular model, two-dimensional coding.

I. INTRODUCTION

Runlength constraint coding is widely used in digital storage appli-
cations, particularly magnetic and optical storage devices [8], [9]. Re-
cent developments in optical storage—especially in the area of holo-
graphic memory—increase recording density by exploiting the fact that
the recording device is a surface. In this new model, the recorded data is
regarded as two-dimensional, as opposed to the track-oriented one-di-
mensional recording paradigm. This new approach, however, necessi-
tates the introduction of new types of constraints which are two-dimen-
sional rather than one-dimensional. While the one-dimensional case
has been widely explored, results in the two-dimensional case have
been slower to arrive. This is mainly due to the fact that imposing con-
straints in a few directions makes the coding problem much more dif-
ficult. Nevertheless, in the last decade there has been a considerable
progress in the study of two-dimensional constraints.

A one-dimensional binary sequence is said to satisfy a (d; k) con-
straint if there are at least d zeros and at most k zeros between any pair
of consecutive ones. Before the first one and after the last one, there are
at most k zeros. A two-dimensional surface is said to satisfy a (d; k)
constraint if each direction defined by its connectivity model satisfies a
one-dimensional (d; k) constraint. The capacity of a two-dimensional
constraint � is defined by

C(�) = lim
n;m!1

log
2
N(n;m j �)

rnm

where N(n;m j �) is the number of n � m arrays satisfying the
constraint �. The number of points in an n � m array for the given
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connectivity model is rnm. An array which satisfies the constraint �
is called � constrained or a � array.

Data should be organized on a two-dimensional surface in some
order. This order will be defined by the way in which the data is read.
For this purpose, four connectivity models are defined. The diamond
model, the square model, and the hexagonal model are frequently con-
sidered in the literature, e.g., for constrained codes they were consid-
ered first by Weeks and Blahut [18]. The triangular model was consid-
ered by [14] for constrained codes and for other applications in [5].
Some other papers which consider capacities of constraints in such
models are [1], [6], [10], [11], [15], [16].

The first connectivity model is the diamond model. In this model, a
point (i; j) 2 2 has the following four neighbors:

f(i+ 1; j); (i� 1; j); (i; j + 1); (i; j � 1)g:

When (i; j) is a boundary point, the neighbor set is reduced to points
within the array. In this model, the data is organized in the two-dimen-
sional rectangular grid and it is read horizontally and vertically.

The second model is called the square model, in which each point
(i; j) 2 2 has eight neighbors

f(i+ 1; j); (i� 1; j); (i; j + 1); (i; j � 1);

(i+ 1; j + 1); (i� 1; j + 1); (i+ 1; j � 1); (i� 1; j � 1)g:

In this model, the data is organized in the two-dimensional rectangular
grid and it is read horizontally, vertically, and in the two diagonal di-
rections.

The third model is called the hexagonal model. Instead of the rect-
angular grid we have used up to now, we define the following graph.
We start by tiling the plane 2 with regular hexagons. The vertices of
the graph are the center points of the hexagons. These points define the
hexagonal lattice [4]. We connect two vertices if and only if their re-
spective hexagons are adjacent. In this way, each vertex has exactly six
neighboring vertices.

We will use an isomorphic representation of the model. This repre-
sentation includes 2 as the set of vertices. Each point (i; j) 2 2 has
the following neighboring vertices:

f(i+ 1; j); (i� 1; j); (i; j + 1);

(i; j � 1); (i� 1; j � 1); (i+ 1; j + 1)g:

It may be shown that the two models are isomorphic [17]. From now on,
by abuse of notation, we will also call the last model—the hexagonal
model. In this isomorphic model, the data is organized in the two-di-
mensional rectangular grid and it is read horizontally, vertically, and in
the direction of one of the diagonals called right diagonal.

All the neighbor sets of the three different models are summarized
in Fig. 1. A square with a dot is the point (i; j). In all models, rows and
columns of the arrays will be indexed in ascending order, bottom to top
and left to right.

The fourth model is called the triangular model. Again, we start by
tiling the plane 2 with regular hexagons. The vertices of the graph are
the vertices of the hexagons. The edges between the vertices are the
sides of the hexagons. Hence, each vertex has exactly three neighboring
vertices. If we connect the centers of the hexagons with lines we will
obtain a tiling of the 2 with equilateral triangles. The vertices of the
graph are the center points of the equilateral triangles. The set of ver-
tices is also a union of two translates of the hexagonal lattice. Clearly, a
point in this model can be represented by a triple (i; j; s) 2 2�f0; 1g.
Each point (i; j; 0) 2 2�f0g has the following neighboring vertices:

f(i; j; 1); (i� 1; j; 1); (i; j � 1; 1)g:
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Fig. 1. Neighbors of position (i; j) in the (a) diamond model, (b) square model,
(c) hexagonal model.

Fig. 2. Neighbors in the trianglular model of positions (i; j; 0) and (i; j; 1).

Each point (i; j; 1) 2 2�f1g has the following neighboring vertices:

f(i; j; 0); (i+ 1; j; 0); (i; j + 1; 0)g:

The neighbor sets in this model are illustrated in Fig. 2.
As the vertices are two translates of the hexagonal lattice, one can

consider the model as having six directions. We will consider it slightly
different. Instead of data stored in the centers of the triangles, the data
will occupy the whole area of the triangle. Therefore, in this interpre-
tation there are three directions in this model. Finally, we note that in
the triangular model an n �m array has 2nm points.

Let C�(d; k) denote the capacity of the (d; k) two-dimensional
constraint in the diamond model. Kato and Zeger [10] proved that
C�(d; k) > 0 if and only if k > d+ 1. C�(d1; k1; d2; k2) denotes the
capacity of the asymmetric (d1; k1; d2; k2) constraint in the diamond
model, i.e., horizontally the constraint is (d1; k1) and vertically
the constraint is (d2; k2). These constraints were handled in [11].

C (d; k), C (d; k) C4(d; k), denote the capacity of the (d; k) con-
straint in the square model, hexagonal model, and triangular model,
respectively.

The rest of this correspondence is organized as follows. In Section II,
we present the known basic techniques to prove zero or positive ca-
pacity. We generalize these techniques, so that they could be applied to
more complicated cases which we will have in succeeding sections. In
Section III, we examine asymmetric constraints in the diamond model
and provide an almost complete solution for the zero/positive capacity
region problem. In Sections IV–VI, we examine capacities of con-
straints in the square model, hexagonal model, and triangular model,
respectively. Discussion and open problems are in Section VII.

II. BASIC TECHNIQUES

In this section, we will survey the known techniques, except for ad
hoc methods, used to prove zero capacity and those used to prove pos-
itive capacity. We will generalize these techniques in a way that will
enable them to handle more complicated scenarios. The first lemma
which appeared in [11] is an immediate consequence of the definition
of the (d; k) constraint.

Fig. 3. A [7 � 12; 3� 5] skeleton tile.

Lemma 1: Let � be a constraint with minimum run-length d and
maximum run-length k in direction �. Let ~� be a constraint with min-
imum run-length ~d � d and maximum run-length ~k � k in direc-
tion � and the same constraints, as in �, in the other directions. Then
C(�) � C(~�).

A. Positive Capacity

An [n�m; k� `] skeleton tile is a tile which consists of an n�m

array from which a k�` array was removed from the upper right corner.
If ` = 1 we simply have an [n �m;k] skeleton tile. An example of a
[7� 12; 3 � 5] skeleton tile is given in Fig. 3.

For two points z1 = (x1; y1) and z2 = (x2; y2), z1; z2 2 2 let

L(z1; z2) = f(ix1 + jx2; iy1 + jy2) : i; j 2 g

be the set of points spanned by z1, z2. This is the lattice defined by z1
and z2 (see [4], [7]). Note, that by abuse of notation the first coordi-
nate is for the row index and the second is for the column index. The
following lemma can be easily verified.

Lemma 2: LetA be an [n�m; k� `] skeleton tile. If we place the
bottom leftmost point ofA on the points ofL((n�k;m�`); (n;�`))
then a tiling of 2 with copies of A is obtained.

The tiling obtained by Lemma 2 will be called the standard tiling. If
A is an n �m array (a skeleton array), then the standard tiling is ob-
tained by substituting k = 0 and ` = 0 in the skeleton tile of Lemma 2.
Clearly, we can also use a parallelogram instead of a rectangle. A stan-
dard tiling can use a few tiles with the same shape and different labels.
In this case, each one of the tiles can have any one of the labels. The
next lemma is a straightforward generalization of similar lemmas for
skeleton arrays, given in [6], [11].

Lemma 3: Let A and B be two identical tiles with different la-
bels, and � a two-dimensional constraint. If the standard tiling with
A and B yields a two-dimensional array which is � constrained then
C(�) > 0. Moreover, if we can use t identical tiles with different la-
bels A1; . . . ;At and the number of points in Ai is N then C(�) �
1

N
log

2
t.

B. Zero Capacity

The most effective method to prove zero capacity was given by
Blackburn [2] for specific constraints. However, the method can be
formulated to handle general two-dimensional constraints.

Assume we want to show that the capacity of a two-dimensional
constraint � is zero. We consider an (n + r1 + r2)� (m+ t1 + t2)
array A which is � constrained, where t1, t2, r1, and r2 are constants
which might depend on the run-length constraints, but do not depend
on n and m. Assume further that the labels at positions of the first r1
rows, the last r2 rows, the first t1 columns, and the last t2 columns,
are known. We now scan the other positions ofA. We scan the other n
rows from bottom to top, and them positions in a row are scanned from
left to right. We assume that all positions in the array are scanned, i.e.,
we omit labels which lead to positions which cannot be labeled. If each
position is determined by the known labels and the positions which are
already scanned then the capacity of the constraint � is zero. We will
not give a proof to the claim since we will prove a much stronger result.
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Fig. 4. Scanning of a (d; d + 1) array.

This technique will be called scanning. The strength of scanning is
demonstrated by providing a very short proof to the following theorem
by Kato and Zeger [10].

Theorem 1: C�(d; d + 1) = 0.
Proof: Consider ann�m arrayAwhich is (d; d+1) constrained.

We will show that the labels ofA are determined by the labels at posi-
tions (i; j), where 0 � i � d or 0 � j � d� 1 or j = m� 1.

We will show that for every d+1 � i, d � j � m� 2, the label of
the position marked byX (see Fig. 4) is determined by the labels to the
left of it and the labels below it. Assume to the contrary thatX can be a
zero and can be a one. It implies that all the positions marked by A are
zeros and either X or Y is a one. Since Y can be a one, it follows that
all positions marked byB are zeros. SinceX can be a zero it follows by
the vertical constraint that C is a one. Similarly, since Y can be a zero,
it follows that D is a one, a contradiction to the horizontal constraint.
Hence, C�(d; d+ 1) = 0.

The scanning technique can be applied on all the connectivity
models. It is strengthened, to all connectivity models, as follows.

Theorem 2: Assume the scanning method is applied to a two-dimen-
sional constraint �. If for the label in each position (i; j) scanned, one
of the following three states holds:

(s1) the label in position (i; j) is completely determined;
(s2) the label can be either zero or one, but with one of these labels

the suffix of the row is completely determined;
(s3) the label can be either zero or one, but the prefix of the row

before position (i; j) is a given sequence P(i; j);
then C(�) = 0.

Proof: Assume � positions, numbered by 0; 1; . . . ; � � 1, are
scanned in a row. Let T be a directed tree with �+ 1 levels defined as
follows. The root of T (level 0) represents position 0. The vertices in
level `, ` < �, represent position `. The vertices in level � represent all
the valid labels of all the � positions in the row. A vertex v which is
not a leaf has out-degree one or two depending whether the label of the
corresponding position is completely determined or not, respectively.
The edge which connects a vertex v in level ` to vertex u in level `+1
is labeled with one of the possible labels of the position represented by
v. If the out-degree of v is two, then one edge is labeled by a zero and
one edge is labeled by a one. Each vertex v is labeled with the ordered
labels of the path from the root to v.

First, we note that the label on a vertex v, which represents position
(i; j), represents the labels of the positions before position (i; j). If
state (s3) holds in position (i; j) represented by v then the label on v
must be P(i; j). Therefore, in each level there is at most one vertex
which represents a position in which state (s3) holds. The number of
leaves of a subtree whose root is in level ` and does not have vertices
which represent positions in state (s3) is at most � � `+ 1.

Now, we construct a tree T 0 from T by swapping subtrees of T ,
with roots on the same level. Clearly, the number of leaves in T 0 is
equal the number of leaves in T . T 0 will be constructed in a way that

Fig. 5. The array T .

Fig. 6. The skeleton tile for the (d; 2d+ 1; 2d; 2d+ 1) constraint.

all vertices which correspond to positions in which state (s3) holds, are
on the same path. The total number of leaves of T 0, which are not on
this path, is at most �

`=1(� � ` + 1) = (�+1)�
2

.
The number of leaves in T is equal to the number of different labels

for a row in the (n + r1 + r2) � (m + t1 + t2) array which is �
constrained. It is now a simple exercise to compute the capacity and
obtain C(�) = 0.

III. ASYMMETRIC RUN-LENGTH-CONSTRAINED CHANNELS

Kato and Zeger [11] have considered the zero/positive region of
C�(d1; k1; d2; k2). They have summarized their results in which seven
cases remained unsolved:

(u1) d1 = 1, k1 = 3, d2 = 2, k2 = 3;
(u2) 2 � d1, k1 = d1 + 1, d2 = d1, k2 � 2d2;
(u3) 2 � d1, d1 + 2 � k1 � 2d1, d2 = d1, k2 = d2 + 1;
(u4) 2 � d1, d1+2 � k1 � 2d1, d1 < d2 < k1� 1, k2 = d2+1;
(u5) 2 � d1, d1 + 2 � k1 � 2d1, d2 = k1 � 1, k2 � 2d2;
(u6) 2 � d1, 2d1 < k1, d1 < d2 < k1 � 1, k2 = d2 + 1;
(u7) 2 � d1, 2d1 < k1, d2 = k1 � 1, k2 � 2d2.

In this section we will solve most of these cases.

Lemma 4: C�(d;2d+ 1; 2d; 2d+ 1) > 0 for every d � 1.
Proof: Let Tn be a (2n � 2) � (2n) array defined as follows.

Tn(1; 2n � 2) = 1 and Tn(0; n � 2) = 1; if Tn(i; j) = 1 then
Tn(i + 2; j � 1) = 1 provided that i + 2 � 2n � 3. In all other
positions Tn has zeros. T4 is illustrated in Fig. 5.

Consider the [(4d+ 4)� (2d+ 3); 2d+ 3] skeleton tile shown in
Fig. 6. LetA andB be the two [(4d+4)�(2d+3);2d+3] tiles obtained
from this skeleton tile by substituting the two skew tetrominoes shown
in Fig. 7 instead of the four asterisks. We claim that any standard tiling
with the arrays A and B yields a (d; 2d + 1; 2d; 2d + 1) constrained
array.
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Fig. 7. Two skew tetrominoes for substitution in the skeleton tile.

Fig. 8. Tiling the plane with skeleton tiles.

Fig. 9. Areas crossing two tiles for the (d; 2d+ 1; 2d; 2d+ 1) constraint.

One can easily verify that it is sufficient to prove that the [(4d+4)�
(2d+3); 2d+3] skeleton tile is a (d; 2d+1; 2d; 2d+1) tile and that the
constraint is not violated on rows and columns crossing two different
skeleton tiles on the positions marked in bold in Fig. 8.

We start with the horizontal constraint. First, note that the ith row of
Tn (0 � i � 2n � 3) has the pattern

0n�i=2�210n+i=2+1; i even
02n�bi=2c�210bi=2c+1; i odd.

Hence, the ith row of the [(4d+ 4)� (2d+ 3); 2d+ 3] skeleton tile,
0 � i � 4d + 3, has the pattern

10d10d1; i = 0

0d�(i�1)=210d+(i�1)=2+2; i odd, 1 � i � 2d

02d�b(i�1)=2c+110b(i�1)=2c+1; i even, 1 � i � 2d

10d � 0d; i = 2d+ 1

0d � �0d; i = 2d+ 2

0d � 0d1 i = 2d+ 3

02d�i=2+110i=2; i even, 2d+ 4 � i < 4d+ 3

03d�bi=2c+210bi=2c�d�1; i odd, 2d+ 4 < i � 4d+ 3.

Therefore, in the [(4d+4)�(2d+3); 2d+3] skeleton tile each row
is a (d; 2d+ 1) sequence. Now, consider the portions of the rows that
cross two skeleton tiles. The scenario is depicted in Fig. 9. Now, one
can easily verify that the constraint is not violated. Similar arguments
hold for the columns. Hence, any standard tiling with A and B is a
(d; 2d + 1; 2d; 2d + 1) array. Therefore, by Lemma 3 C�(d; 2d +
1; 2d; 2d+ 1) > 0.

Fig. 10. A skeleton array for the (d; 2d+ 2; 2d+ 1; 2d+ 2) constraint.

Lemma 5: C�(d;2d+ 2; 2d+ 1; 2d+ 2) > 0 for every d � 1.
Proof: Consider the (4d+5)�(2d+3) skeleton array of Fig. 10.

Let A and B be the two (4d + 5) � (2d + 3) arrays obtained from
the skeleton array by substituting a one instead of one of the asterisks
and a zero instead of the second asterisk. One can easily verify that
any standard tiling withA and B yields a two-dimensional (d; 2d+2;
2d+1; 2d+2) constrained array. Therefore, by Lemma 3 C�(d; 2d+
2; 2d+ 1; 2d+ 2) > 0.

Lemma 6: If d1 � 1, k1 > 2d1, d2 = k1 � 1, and k1 � k2 � 2d2
then C�(d1; k1; d2; k2) > 0.

Proof: Assume d1 � 1, k1 = 2d1 + t, t > 0, d2 = k1 � 1, and
k2 = k1. We distinguish between two cases:

Case 1: t = 2r + 1, r � 0.
By Lemma 4, we have C�(d1 + r; 2d1 + 2r + 1; 2d1 +
2r; 2d1+2r+1) > 0. Therefore, by Lemma 1, we have
C�(d1; 2d1 + 2r + 1; 2d1 + 2r; 2d1 + 2r + 1) > 0.

Case 2: t = 2r + 2, r � 0.
By Lemma 5, we haveC�(d1+r; 2d1+2r+2; 2d1+2r+
1; 2d1 + 2r + 2) > 0. Therefore, by Lemma 1 we have
C�(d1; 2d1+2r+2; 2d1+2r+1; 2d1+2r+2) > 0.

Hence,C�(d1; 2d1+t; 2d1+t�1; 2d1+t) > 0 and thus by Lemma
1 we have that if d1 � 1, k1 > 2d1, d2 = k1� 1, and k1 � k2 � 2d2
then C�(d1; k1; d2; k2) > 0.

Lemma 7: If d � 2 and d � 1 � r � 1 then C�(d;2d + 1; d +
r; d + r + 1) > 0.

Proof: We first define a (d+ r � 1)� d array Hd;r recursively
as follows. For � � 1, let

H�;2� =

0

H��1;2��1

...
0

0 � � � 0 0

0 � � � 0 1

H�;2�+1 =

1 0 � � � 0

0 0 � � � 0

0
... H��1;2�

0

where H�;1 = I� . H8;6 is illustrated in Fig. 11.
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Fig. 11. The array H .

Fig. 12. The skeleton tile for (d; 2d+ 1; d+ r; d+ r + 1) constraint.

Fig. 13. Areas crossing two tiles for the (d; 2d+1; d+r; d+r+1) constraint.

The (d + r � 1) � d array H 0

d;r is defined by the rotation of Hd;r

by 180�. Note that Hd;r = H 0

d;r if and only if r is odd. Also, in the
“center” of Hd;r (H 0

d;r) there is the identity matrix Id�r+1. This part
of the array will be called center.

Consider the [(2d+ 2r+ 4)� (3d+ 2); 2d+ 2r+ 1] skeleton tile
of Fig. 12. Let A and B be the two [(2d+ 2r + 4)� (3d+ 2); 2d+
2r + 1] tiles obtained from the skeleton tile by substituting the two
skew tetrominoes of Fig. 7 instead of the four asterisks.

As in the proof of Lemma 4, we have to prove that any standard tiling
withA and B is a (d; 2d+1; d+ r; d+ r+1)-constrained array. One
can easily verify that it is sufficient to prove that the [(2d+ 2r+ 4)�

Fig. 14. Relative locations of H arrays.

(3d+2);2d+2r+1] skeleton tiles are (d; 2d+1; d+r; d+r+1) tiles
and that the constraint is not violated on rows and columns crossing two
different skeleton tiles on the positions marked in bold in Fig. 8.

First note that rotating the plane by 180�, around any of the tetromi-
noes (while the tetrominoes are still labeled with the asterisks) leaves
the plane with exactly the same labels. Note also that in Figs. 12 and
13 all the gaps between ones, in which at least one of the ones is not
in Hd;r or H 0

d;r are calculated and written. Therefore, we only have to
calculate the gaps between ones in the rectangles depicted in Fig. 14. In
each one of the three items (Fig. 14(a)–(c)), let � be the leftmost copy
of Hd;r , � the middle copy, and 
 the rightmost copy of Hd;r .

1) We start with the ones of Fig. 14(a). We calculate the gaps between
ones, where one of the ones is in �. If the second one is in �

then both ones belong to the center of Hd;r , and hence the gap
between them is d. If the corresponding row in � consists only of
zeros, then the corresponding row in 
 contains a one as depicted
in Fig. 14(a). The gap between these two ones is 2d. The gaps
between ones of � and 
 are the same as the gaps between the
ones of � and �.

2) The gaps between the ones of� and � in Fig. 14(b) are the same as
the gaps between the ones of � and � in Fig. 14(a). The gaps be-
tween the ones of � and 
 in Fig. 14(b), where the corresponding
row of � has zeros are greater by one than the gaps between the
ones of � and 
 in Fig. 14(a), and hence, these gaps have length
2d+ 1. Similarly, the gaps between � and 
 is d+ 1.

3) The gaps between ones in Fig. 14(c), are handled similarly.
4) Since the height of Hd;r is d+ r � 1, it follows that the vertical

gaps between ones in Fig. 14(d) are d+ r if r is odd. If r is even,
then the gap between two ones is d + r if at least one of them is
not in the center of its shape, and d+r+1 between the other ones.

5) The vertical gaps between ones in Fig. 14(e) are d+r if r is even.
If r is odd, then the gap between two ones is d+ r if at least one
of them is not in the center of its shape, and d + r + 1 between
the other ones.

Thus, any standard tiling withA andB is a (d; 2d+1; d+r; d+r+1)
constrained array. Therefore, by Lemma 3, C�(d; 2d + 1; d + r; d +
r + 1) > 0.

Lemma 8: If d1 � 2,k1 > 2d1, d1 < d2 < k1�1, and k2 = d2+1,
then C�(d1; k1; d2; k2) > 0.
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Fig. 15. Labels of the array in Proposition 1.

Proof: We distinguish between two cases:

Case 1: d1<d2< 2d1.
By Lemma 7, we have C�(d1; 2d1+1; d2; d2+1) > 0
and hence, by Lemma 1, we have
C�(d1; k1; d2; d2 + 1) > 0.

Case 2: 2d1� d2<k1� 1.
By Lemma 6, we have C�(d1; d2 + 1; d2; d2 + 1) > 0
and hence, by Lemma 1, we have
C�(d1; k1; d2; d2 + 1) > 0.

Proposition 1: If d1 � 2, k1 � 2d1, d1 � d2 � k1 � 1, and
k2 = d2 + 1, then C�(d1; k1; d2; k2) = 0.

Proof: Consider an arrayAwhich is (d1; k1; d2; k2) constrained.
We will show that the label X at position (i; j) is determined by the d1
labels to the left of it, and the labels of the (d2 + 1)� (d1 + 1) array
below it (see Fig. 15). Assume to the contrary that X can be labeled
by a zero and can be labeled by a one. It implies that all the positions
marked by A are zeros. If any of them is labeled with a one it would
imply that X is a zero to avoid a pattern which violates the horizontal
constraint. The same argument vertically implies that all the positions
marked by B are zeros.

If the position marked by C is a zero then the positions marked by
B or C form a run of k2 zeros, which implies that X is a one. Hence,
C is a one and all the positions marked by D are zeros to satisfy the
horizontal constraint.

Consider the d2 positions marked by E in one of the corresponding
d1 columns. If all these d2 positions are zeros then the position marked
by F in the same column should be labeled with a one by the vertical
constraint and X is a zero by the horizontal constraint. Therefore, in
each column with positions marked by E one of these positions is a
one which implies that all the positions marked by F are labeled by
zeros. Since all positions marked by A are also zeros, it follows that X
is a one, which contradicts our assumption.

Thus, by Theorem 2 we have C�(d1; k1; d2; k2) = 0.

The results in this section produce solutions to most of the seven un-
solved cases. (u1) is solved in Lemma 4, (u2), (u3), and (u4) in Propo-
sition 1, (u6) in Lemma 8, and (u7) in Lemma 6. (u5) was solved when
k2 = d2+1 in Proposition 1. The only case which remained unsolved
is 2 � d1, d1+2 � k1 � 2d1, d2 = k1� 1, and d2+2 � k2 � 2d2.

IV. THE SQUARE MODEL

Let A be an n � n array. We say that A has n rows, n columns, n
right diagonals, and n left diagonals. A(i; j) belongs to row i, column
j, right diagonal [i � j]n, and left diagonal [i + j]n, where [�]n is an
integer � such that 0 � � � n � 1 and � � � (mod n). An n � n

permutation array is a doubly periodic nonattacking queens array if
each row, column, right diagonal, and left diagonal has exactly one one.

Lemma 9: A standard tiling with a (d+1)�(d+1) doubly periodic
nonattacking queens array is a (d; d) array.

Fig. 16. Two 5 � 5 exchangeable arrays.

Proof: LetA be a (d+1)�(d+1) doubly periodic nonattacking
queens array. Consider the following (2d+ 2)� (2d+ 2) array:

B =
A A

A A
:

Clearly, each row (column) of B has two ones separated by d zeros.
Now, consider the bottom left and the upper right copies of A. Each
right diagonal which has a one on these arrays has two ones on the
corresponding diagonal ofB. They are separated by d zeros as the other
two copies ofA cannot have a one on the same right diagonal ofB. The
same argument holds for the upper left and the lower right copies ofA,
and the left diagonals.

Note, that any run of d+1 symbols in the tiling has a representation
in B. Therefore, ones in each row of the tiling are separated by d zeros,
and the same is true for columns, and diagonals.

It is easy to verify that if A is an infinite (d; d) array then any (d+
1)� (d+ 1) subarray of A is a doubly periodic nonattacking queens
array. Thus, we have the following.

Corollary 1: An infinite (d; d) array exists if and only if a (d+1)�
(d+ 1) doubly periodic nonattacking queens array exists.

If A = (aij) (aij = A(i; j)) is an m �m array and B = (brs) is
an n � n array, then the direct product A � B is the mn�mn array
given by

A �B =

am1B am2B � � � ammB
...

... � � �
...

a21B a22B � � � a2mB

a11B a12B � � � a1mB

:

Note, that rows are ordered from bottom to top, which is some abuse
of the traditional notation. A similar definition is given when A is an
infinite array. One can easily verify the following.

Lemma 10: IfA is an m�m doubly periodic nonattacking queens
array and B is an n � n doubly periodic nonattacking queens array,
thenA�B is a doubly periodic mn�mn nonattacking queens array.

Let P andQ be the two 5 � 5 doubly periodic nonattacking queens
arrays given in Fig. 16. The ones in both arrays occupy the same rows,
columns, and diagonals (without considering them periodic modulo 5).
Therefore, we have the following statement.

Lemma 11: If A is an infinite (d; d) array then any exchanges of
copies of P with copies of Q in disjoint positions of A will result in a
(d � 3; d + 3) array.

For r 6� 2 (mod 3) let

Lr = f(x; y) : x = 2j + `; y = j + r`; j; ` 2 Zg (1)

be a set of lattice points in 2.

Lemma 12: If (x; y) 2 Lr then
• (x�2r+1; y+2r�1); (x; y+2r�1); (x+2r�1; y+2r�1); (x+

2r � 1; y) 2 Lr ;
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• (x� j; y+ j); (x; y+ j); (x+ j; y+ j); (x+ j; y) =2 Lr , for all
j, 1 � j � 2r � 2.
Proof: Assume (x; y) 2 Lr for some r 2 . To prove the lemma

we have to solve each one of the four sets of equations:
1) x + 2j + l = x � s and y + j + rl = y + s,
2) x + 2j + l = x and y + j + rl = y + s,
3) x + 2j + l = x + s and y + j + rl = y + s,
4) x + 2j + l = x + s and y + j + rl = y,

where 0 < s < 2r in all the four sets of equations. The solutions
correspond to the two claims of the lemma. It is elementary algebra to
verify the solutions of these sets.

Corollary 2: Let d = 2r, r 6� 1 (mod 3) be an even integer and
let A be an infinite array, where A(i; j) = 1 if (i; j) 2 Lr+1. Then A
is a (d; d) array.

By Corollary 1 and Lemma 10 we have the following.

Lemma 13: If A is a (d; d) array then A�P is a (5d+ 4; 5d+ 4)
array.

From Lemmas 3, 11, 13, and Corollary 2 we have the following.

Theorem 3: C (d; d+ 6) > 0, d � 1, 21 (mod 30).

Instead of the 5 � 5 arraysP andQ we can take other n�n arrays,
when n � 1 or 5 (mod 6). Let Pn be the array defined by Pn(i; j) =
1 iff j � 2i (mod n) and letQn be the array defined byQn(i; j) = 1
iff i � 2j (mod n). Note, that P5 andQ5 are P andQ. It is also easy
to verify the following.

Lemma 14: Qn is a subarray of L .

Lemma 15: If A is an infinite (d; d) array then any exchanges of
copies of Pn with copies ofQn in disjoint positions ofA will result in
a (d� n + 3; d + n � 3) array if n � 7.

Proof: By definition Qn and Pn have mirror symmetry around
the line y = x. Moreover, since

fi� j : Pn(i; j) = 1g = fi� j : Qn(i; j) = 1g

it follows that the ones in both arrays occupy the same rows, columns,
and diagonals (without considering them periodic modulo n).

For n � 7, the line in which the difference between ones of Pn

and Qn is the largest, is the one in which Pn(n� 1; n � 2) = 1 and
Qn(2;1) = 1. The gap between these two positions is n�3 and hence
any exchanges of copies of Pn with copies of Qn in disjoint positions
of A will result in a (d� n+ 3; d+ n� 3) array.

Note that Lemma 15 does not hold for n = 5.
Now, by applying Lemma 10 on L and Pn we obtain an (n(d+

1)�1; n(d+1)�1) arrayA. By exchanging copies ofPn with copies
of Qn in disjoint positions of A we obtain an (nd+ 2; n(d+ 2)� 4)
array and hence, by Lemma 3, we have the following.

Theorem 4: C (nd+2; n(d+2)�4) > 0, for oddn 6� 3 ( mod 6),
n � 7, and even d 6� 2 (mod 6).

Corollary 3:
• C (d; d + 8) > 0, d � 2 or 30 (mod 42).
• C (d; d + 16) > 0, d � 2 or 46 (mod 66).
Each one of the values C (44;52) > 0, C (72; 80) > 0,

C (244;260) > 0, and C (266;282) > 0 is obtained only by one of
the four cases in Corollary 3 and cannot be handled by Theorem 3. For
n = 13, we consider two different permutation arrays P 0 and Q0. Let
P 0 be the array defined by P 0(i; j) = 1 iff j � 3i (mod n) and Q0

be the array defined by Q0(i; j) = 1 iff i � 3j (mod n). Similarly to
Corollary 3 we have the following.

Theorem 5: C (d; d + 18) > 0, d � 3, or 55 (mod 78). The
values C (367;385) > 0 and C (393; 411) > 0 are obtained from
Theorem 5 and cannot be obtained from Theorem 3 and Corollary 3.
For small values of d, the zero/positive capacity region is slightly dif-
ferent. For example, by using a (4; 4) array and replacing any set of
ones, in which no two ones have a gap of length 4, with zeros, we prove
that C (4; 9) > 0.

Theorem 6: If n is even then there is no n � n doubly periodic
nonattacking queens array.

Proof: Assume that n is even and an n � n doubly periodic
nonattacking queens array A exists. We write A as a sequence
a0; a1; . . . ; an�1, where aj = i if and only if A(i; j) = 1. Since
A is a doubly periodic nonattacking queens array, it follows that
[a0]n; [a1 � 1]n; . . . ; [an�1 � (n � 1)]n, is a permutation of
0; 1; . . . ; n � 1. For any given permutation p0; p1; . . . ; pn�1 of
0; 1; . . . ; n � 1 we have

n�1

i=0

pi =
(n� 1)n

2
�

n

2
(mod n) (2)

since n is even. Therefore,

n�1

i=0

(ai � i) =

n�1

i=0

ai �

n�1

i=0

i � 0(mod n):

Hence, by (2) again [a0]n; [a1 � 1]n; . . . ; [an�1 � (n � 1)]n cannot
be a permutation, a contradiction.

Thus, ifn is even, then there is non�n doubly periodic nonattacking
queens array.

Theorem 7: If n � 0 (mod 3) and there exists an n � n doubly
periodic nonattacking queens array then n � 0 (mod 9).

Proof: Assume that n � 0; 3; or 6 (mod 9) and an n�n doubly
periodic nonattacking queens arrayA exists. We writeA as a sequence
a0; a1; . . . ; an�1, where aj = i if and only if A(i; j) = 1. Since A is
a doubly periodic nonattacking queens matrix, it follows that

[a0]n; [a1 � 1]n; . . . ; [an�1 � (n� 1)]n

and

[a0]n; [a1 + 1]n; . . . ; [an�1 + n� 1]n

are permutations of 0; 1; . . . ; n�1. Let pi = [ai� i]n, 0 � i � n�1.
p0; p1; . . . ; pn�1 is a permutation of 0; 1; . . . ; n � 1 such that

[p0]n; [p1 + 1]n; . . . ; [pn�1 + n� 1]n

and

[p0]n; [p1 + 2]n; . . . ; [pn�1 + 2(n� 1)]n

are also permutations of 0; 1; . . . ; n � 1. Let
• t = jfi : i � 0 (mod 3) and pi � 0 (mod 3)gj
• s = jfi : i 6� 0 (mod 3) and pi 6� 0 (mod 3)gj.

Given an integer � 6� 0 (mod 3) such that p� 6� 0 (mod 3) we have
that either p� + 1 or p� + 2 is congruent to 0 modulo 3, and since
jfi : pi + i � 0 (mod 3)gj= jfi : pi + 2i � 0 (mod 3)gj = n

3
we

have

t+
s

2
=

n

3
: (3)
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Fig. 17. Scanning of a (d; d + 3) array.

Fig. 18. Case 1 in the proof of Theorem 8.

Clearly, jfi : i 6� 0 (mod 3) and pi � 0 (mod 3)gj is equal to n

3
� t

and also to 2n

3
� s and hence,

n

3
� t = 2

n

3
� s: (4)

By solving (3) and (4) we have that t = n

9
.

Theorem 8: C (d; d+ 3) = 0 for every d � 1.
Proof: If d 2 f1; 2g, then the theorem can be easily verified (see

[3]). If d 2 f3; 4; 5g, then the theorem follows from Theorem 9 in
Section V which follows.

Assume d � 6, and consider an array A which is (d; d + 3) con-
strained. We will show that the label X at position (i; j) is determined
by the labels to the left of it and labels below it (see Fig. 17).

Assume to the contrary that X can be labeled by a zero and can
be labeled by a one. It implies that all the positions marked by A are
zeros and either X or one of the three positions to right of X is a one.
Therefore, at least one of the following three cases must be valid.

Case 1: X can be a one and Y3 can be a one (see Fig. 18).
Clearly, all positions marked by B are zeros. Therefore, if X is a

zero then by the vertical constraint and the right diagonal constraint,
the positions marked by C will be labeled by ones. Similarly, if Y3 is a
zero then by the vertical constraint and the left diagonal constraint, the
positions marked by D will be labeled by ones. This implies that all
positions marked by E must be zeros. Hence, to avoid a vertical run of
d+4 zeros two of the four positions marked by F must be ones, which
is clearly impossible.

Case 2: X can be a one and Y2 can be a one (see Fig. 19).
As in Case 1, the positions marked byB are zeros. Also, ifX is a zero

then the positions marked by C1 and C2 will be labeled by ones, and
if Y2 is a zero then the positions marked by D will be labeled by ones.
Therefore, the positions marked byE must be zeros, which implies, by
the diagonals constraints, that if C2 is a zero then both F1 and F2 will
be ones, a contradiction to the horizontal constraint.

Case 3:X can be a one and Y1 can be a one.
This case is verified easily and the contradiction is similar to the one

in Case 1.
Thus, C (d; d+ 3) = 0.

Fig. 19. Case 2 in the proof of Theorem 8.

Fig. 20. Two 3 � 3 exchangeable arrays.

V. THE HEXAGONAL MODEL

Kukorelly and Zeger [12], [13] have found some of the positive ca-
pacity region for two-dimensional constrained channels in the hexag-
onal model. Their results are summarized in the following theorem.

Theorem 9:
• If d � 0 (mod 6) then C (d; d + 4) > 0.
• If d � 2 is even then C (d; 2d+ 1) > 0.
• C (d; d + 2) = 0 for every d � 1.
• If d 2 f3; 4; 5; 7; 9; 11g then C (d; d+ 3) = 0.

In the hexagonal model there are three directions: horizontal (rows),
vertical (columns), and diagonal (right diagonals). An n� n permuta-
tion array is a doubly periodic nonattacking semi-queens array if each
row, each column, and each right diagonal has exactly one one.

Similarly to Lemma 9, we have the following.

Lemma 16: A standard tiling with a doubly periodic (d+1)�(d+1)
nonattacking semi-queens array is a (d; d) array.

The proof of Theorem 6 also implies the following result.

Theorem 10: If n is even then there is no n � n doubly periodic
nonattacking semi-queens array.

For even n � 6, (n + 3) � (n + 3) doubly periodic nonattacking
semi-queens arrays exist for all n’s. We will use the following n � n

skeleton array:

B =
0 P

Hn 0

where Hn is an appropriate n�n permutation array, and P is a 3 � 3
array. LetAn+3 andBn+3 be the two (n+3)�(n+3) arrays obtained
from the skeleton array by substituting inP the two 3� 3 arrays shown
in Fig. 20. If An+3 and Bn+3 are (n+ 3)� (n+ 3) doubly periodic
nonattacking semi-queens arrays then by similar arguments to those

used in Section IV and Lemma 3, we will have thatC (n; n+4) > 0.
In the construction of Hn we distinguish between the even values

of n modulo 10. Each such value has a different construction. The
first arrays in each congruence modulo 10 are presented in Figs. 21
and 22. The generalization is readily verified and the proofs that the
arrays have the required properties are easy to observe and hence they
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Fig. 21. Some arrays H , for n � 2; 4; 6(mod 10). Fig. 22. Some arrays H , for n � 8; 0(mod 10).
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Fig. 23. A triangular array.

Fig. 24. The triangular array T .

Fig. 25. Three 2 � 2 exchangeable triangular arrays.

will be omitted and left for the reader. Hence, we have the following
theorem.

Theorem 11: C (d; d+ 4) > 0, for even d > 5.

VI. THE TRIANGULAR MODEL

LetA be an n�n triangular array. We say thatA has n rows, n right
columns, and n left columns. A(i; j; s) belongs to row i, right column
j, left column [i + j + s]n (see Fig. 23). An n � n triangular array
is called a doubly periodic nonattacking triangle queens array if each
row, right column, and left column has exactly one one. The following
two lemmas are proved similarly to Lemmas 9 and 11.

Lemma 17: An n�n doubly periodic nonattacking triangle queens
array exists if and only if a (2n� 1; 2n� 1) triangular array exists.

Lemma 18: If A is an n � n (d; d) triangular array then any ex-
changes of copies of the patterns shown in Fig. 25 in disjoint positions
of A will result in a (d� 2; d + 2) array.

Lemma 19: If d � 1 (mod 4) then

C4(d; d+ 4) �
1

2(d+ 3)
log

2
3:

Proof: For n even, we construct the following n� n doubly pe-
riodic nonattacking triangle queens array Tn, where Tn(i; i; s) = 1
if s 6� i (mod 2), 0 � i � n � 1 (T6 is illustrated in Fig. 24). By
Lemma 17, the standard tiling with Tn is a (2n� 1; 2n� 1) array. By
Lemma 18, any exchanges of copies of the pattern shown in Fig. 25 in
disjoint positions ofA will result in a (2n�3; 2n+1) array. The total
number of different (2n � 3; 2n + 1) arrays used in the tiling is 3 .
Hence, by Lemma 3 we have that C4(2n�3; 2n+1) � 1

4n
log2 3.

Fig. 26. The pattern PEven.

Fig. 27. Labels implied by the pattern PEven.

Lemma 20: If n is odd then there is no n�n doubly periodic nonat-
tacking triangle queens array which contains an appearance of one of
the patterns shown in Fig. 25.

Proof: Assume that n is odd and an n � n doubly periodic
nonattacking triangle queens arrayA exists. We writeA as a sequence
a0; a1; . . . ; an�1, where ai = (ji; si) if A(i; ji; si) = 1. Since A is
a doubly periodic nonattacking triangle queens array, it follows that
for 0 � r < ` � n � 1 we have jr 6= j` and

jr + r + sr 6� j` + `+ s`(mod n):

Therefore, j0; j1; . . . ; jn�1 and

[j0 + 0 + s0]n; [j1 + 1 + s1]n; . . . ; [jn�1 + (n� 1) + sn�1]n

are permutations of 0; 1; . . . ; n � 1. For any given permutation
p0; p1; . . . ; pn�1 of 0; 1; . . . ; n � 1 we have

n�1

i=0

pi =
(n� 1)n

2
� 0(mod n) (5)

since n is odd. Therefore,

n�1

i=0

si =

n�1

i=0

(ji + i+ si)�

n�1

i=0

ji �

n�1

i=0

i � 0(mod n):

Hence, for each 0 � r < ` � n � 1, we have sr = s`. Thus, there
is no doubly periodic n� n nonattacking triangle queens array which
contains an appearance of any 2 � 2 array shown in Fig. 25.

Lemma 21: Let d � 6 be an even integer, h = d+6

2
, and let A be

an infinite (d; d+ 3) array. If A contains an r � h subarray B whose
first two rows form the pattern PEven (see Fig. 26), then the first two
and the last two right columns of B are substrings of (10d+1)1.

Proof: Let C be an r � (h + 1) sub-array of A with the pattern
PEven as depicted in Fig. 27. Clearly, the positions marked by A are
zeros. By the left column constraint either B1 or B2 will be a one and
hence all positions marked byC are zeros. Assume the position marked
byD is a one. Then, all positions marked byE will be zeros which will



5138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

Fig. 28. The possible orientations of a scanned position.

Fig. 29. Case 1 of Lemma 22.

create a run-length of d+ 7 zeros in the right column, a contradiction.
Hence, D is a zero, F is a one, B1 is a zero, and B2 is a one.

The four ones in the left columns ofB2 andF form the pattern PEven
and hence by the same arguments the two positions marked by G are
ones. The positions marked by B2, F , and G form again the pattern
PEven. The claim of the lemma is proved now by induction.

Lemma 22: If d � 6 is even then C4(d; d+ 3) = 0.
Proof: We will use the scanning technique again. Assume we

have to label the next scanned position marked by X . We have to dis-
tinguish between two different types of orientations of the position as
depicted in Fig. 28.

Case 1: Assume that X , as depicted in Fig. 29 (to simplify the pic-
ture, the array is drawn in a different orientation), is not uniquely de-
termined, i.e., it can be labeled by a zero and it can be labeled by a one.
It implies that all the positions marked by A are zeros, either X or one
of the three positions to right of X is a one, and at least one of the fol-
lowing three cases must be valid.

Case 1a: X can be a one and Y1 can be a one. Clearly, all positions
marked byB are zeros (see Fig. 30). X can be a zero and hence, either
C1 or C2 is a one. Y1 can be a zero and therefore either D1 or D2 is
a one. It implies that C1 and D1 are ones. Hence, all positions marked
by E are zeros. By the horizontal constraint either F1 or F2 is a one.
Since Y1 can be a zero, it follows that eitherG1 or G2 is a one. Hence,
F1 is a one and all positions marked by H are zeros.

Assume I will be a one. Then all positions marked by J will be zeros,
creating a run with d + 4 zeros in their right column, a contradiction.
Therefore, I is labeled by a zero.

Assume all the d� 5 positions marked by K are zeros. Then L1 is
labeled by a one and Y1 cannot be a one, a contradiction. Hence, one
of the positions marked byK is a one, L1 and L2 are labeled by zeros.

Therefore, if X will be a one then Y1 will be a zero and by its right
column constraint M will be a one. M , X , C1, and D1 will form the
pattern PEven, and hence, by Lemma 21, the whole prefix of the row
before X is a given sequence P(i; j), and we are in state (s3).

Case 1b: X can be a one and Y2 can be a one. Clearly, all positions
marked byB are zeros (see Fig. 31).X can be a zero, and hence exactly
one of theCi’s is a one, and exactly one of theDi’s is a one. Y2 can be
a zero and therefore exactly one of the Ei’s is a one, and exactly one
of the Fi’s is a one. Clearly, D3 and E3 cannot be ones.

• If E2 is a one then C1 is a one. If X will be a one then Y2 will be
a zero and by its left column constraint G will be a one. E2, C1,
X , and G will form the pattern PEven, and hence, by Lemma 21,
the whole prefix of the row before X is a given sequence P(i; j),
and we are in state (s3).

• If D2 is a one then F1 is a one. If Y2 will be a one then X will be
a zero and by its right column constraintH will be a one.D2, F1,

Fig. 30. Case 1a of Lemma 22.

Fig. 31. Case 1b of Lemma 22.

Fig. 32. Case 1c of Lemma 22.

Y2, andH will form the pattern PEven, and hence, by Lemma 21,
the suffix of the current row is completely determined, and we are
in state (s2).

• IfD2,D3,E2, andE3 are zeros thenD1 andE1 are ones which is
impossible since the gap between them is d�1 and the run-length
constraint will be violated.

Case 1c: X can be a one and Y3 can be a one. Clearly, all positions
marked byB are zeros (see Fig. 32). IfX will be a one then Y3 will be
a zero and by its left column constraint C will be a one. Hence, all the
positions marked byD will be labeled by zeros, creating a run of d+4
zeros in the right column of Y3, a contradiction.

Case 2: IfX is a position in the second orientation we proceed simi-
larly to Case 1. The proof is similar, easier, and shorter. It can be found
in [3].

Lemma 23: Let d � 5 be an odd integer, h = d+7

2
, and letA be an

infinite (d; d+3) array. IfA contains an r�h subarray B whose first
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Fig. 33. The pattern POdd.

Fig. 34. Labels implied by the pattern POdd.

Fig. 35. Two triangular arrays to prove that C (2; 4) > 0.

two rows form the pattern POdd (see Fig. 33), then the first two and the
last two right columns of B are substrings of (10d+2)1.

Proof: Let C be an (r + 2) � h right subarray of A with the
pattern POdd as depicted in Fig. 34. Clearly the positions marked by
A are zeros.

Assume the position marked by B is a one. Then the d�4 positions
marked by C will be zeros, creating a run of d+ 4 zeros in their right
column, a contradiction. Therefore, B is a zero and either D1 or D2 is
a one.

AssumeD1 is a one. ThenD2 and all positions marked byE1 orE2

will be zeros. Hence, F will be a one and the two positions marked by
G will be zeros, and it will create a run-length of d + 4 zeros in their
left column, a contradiction. Therefore,D1 is a zero andD2 is a one. It
implies that all positions marked by E1 or G are zeros, and hence E2

is a one.
The four ones in the left columns of D2 and E2 form the pattern

POdd and hence by the same arguments the two positions marked by
H are ones. The positions marked by D2, E2, and H form again the
pattern POdd. The claim of the lemma is proved now by induction.

Similarly to Lemma 24, we have the following lemma that has a
similar shorter proof which can be found in [3].

Lemma 24: If d � 5 is odd then C4(d; d+ 3) = 0.

Corollary 4: c4(d; d + 3) = 0 for d � 5.

For small values of d, the zero/positive capacity region is slightly
different. For example, it is a simple exercise to prove thatC4(1; 3) >
0, C4(3; 7) > 0 by using (1; 1) and (3; 3) arrays, respectively. A
tiling with the lattice points f(x; y) : x = 3i; y = 3i+ 9j; i; j 2 Zg

and the two triangular arrays of Fig. 35 imply that C4(2; 4) > 0.
By using case analysis similarly to the one used in Lemma 22 we can
prove that C4(3;6) = 0. By Lemma 24, we have that C4(5; 8) = 0
and hence if a (4; 8) array exists then there exists a run of zeros whose
length is exactly 4. Starting with this and analyzing the array one can
easily obtain that a run of zeros whose length is 9 must exists. Hence,
C4(4;8) = 0. The complete proofs appear in [3].

VII. DISCUSSION AND OPEN PROBLEMS

We considered the positive capacity region of two-dimensional
run-length-constrained channels in four connectivity models—the
diamond, square, hexagonal, and triangular models. We have managed
to find some regions where the capacity is positive and some in which
the capacity is zero, by using generalizations and modifications of
known techniques. Some regions remain open for future research. The
following problems should be the focus of further research.

1) The scanning method of [2] was generalized in Theorem 2. Can it
further be generalized to handle constraints in which the number
of constrained arrays is much larger?

2) For 2 � d1, d1+2 � k1 � 2d1, d2 = k1�1, d2+2 � k2 � 2d2,
is C�(d1; k1; d2; k2) = 0 or C�(d1; k1; d2; k2) > 0? This is the
only unknown value for asymmetric constraints in the diamond
model.

3) When n � 0 (mod 9), is there a permutation p0; p1; . . . ; pn�1
of 0; 1; . . . ; n � 1 such that

[p0]n; [p1 + 1]n; . . . ; [pn�1 + n� 1]n

and

[p0]n; [p1 + 2]n; . . . ; [pn�1 + 2(n� 1)]n

are also permutations of 0; 1; . . . ; n � 1?
4) Find an infinite set S of positive integers and an integer r such

thatC (d; d+r) = 0 andC (d; d+r+1) > 0 for each d 2 S.
The same problem should be considered for the square model.

5) How good is the bound on the capacity given in Lemma 3? For
example, can the bound of Lemma 19

C4(d; d+ 4) �
1

2(d+ 3)
log2 3; for d � 1 (mod 4)

be improved?
Finally, some of the results we gave can be readily generalized. For

example, Lemma 11 can be generalized as follows.

Lemma 25: Let A be an infinite (d; k) array in the square model.
Then, any exchanges of copies of P with copies ofQ, in disjoint posi-
tions ofAwhich do not share a run of zeros, will result in a (d�3; k+3)
array.

Similar generalizations exist for the hexagonal and the triangular
models.

ACKNOWLEDGMENT

The authors wish to thank Ken Zeger for providing his results and
Simon Blackburn for providing [2].

REFERENCES

[1] J. J. Ashley and B. H. Marcus, “Two-dimensional low-pass filtering
codes,” IEEE Trans. Commun., vol. 46, no. 6, pp. 724–727, Jun. 1998.

[2] S. R. Blackburn, “Two dimensional runlength constrained arrays with
equal horizontal and vertical constraints,” IEEE Trans. Inf. Theory, to
be published.

[3] K. Censor, “Constrained Codes for Two-Dimensional Channels,”
M.Sc. thesis, Computer Science Department, Technion–Israel Inst.
Technol., Haifa, Israel, 2006.

[4] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and
Groups. New York: Springer-Verlag, 1988.



5140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 11, NOVEMBER 2006

[5] S. I. Costa, M. Muniz, E. Agustini, and R. Palazzo, “Graphs, tessella-
tions, and perfect codes on flat tori,” IEEE Trans. Inf. Theory, vol. 50,
no. 10, pp. 2363–2377, Oct. 2004.

[6] T. Etzion and K. Paterson, “Zero/positive capacities two-dimensional
runlength-constrained arrays,” IEEE Trans. Inf. Theory, vol. 51, no. 9,
pp. 3186–3199, Sep. 2005.

[7] T. Etzion and A. Vardy, “Two-dimensional interleaving schemes with
repetitions: Constructions and bounds,” IEEE Trans. Inf. Theory, vol.
48, no. 11, pp. 428–457, Nov. 2002.

[8] K. A. S. Immink, Coding Techniques for Digital Recorders. New
York: Prentice-Hall, 1991.

[9] ——, Codes for Mass Data Storage Systems. Amstedam, The
Netherlands: Shannon Foundation Publishers, 1999.

[10] A. Kato and K. Zeger, “On the capacity of two-dimensional run length
constarined channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
1527–1540, Jul. 1999.

[11] ——, “Partial characterization of the positive capacity region of two-
dimensional asymmetric run length constrained channels,” IEEE Trans.
Inf. Theory, vol. 46, no. 7, pp. 2666–2670, Nov. 2000.

[12] Z. Kukorelly and K. Zeger, “The capacity of some hexagonal (d; k)
constraints,” in Proc. IEEE Int. Symp. Information Theory, Wash-
ington, DC, Jun. 2001, p. 64.

[13] ——, “Automated theorem proving for hexagonal run length con-
strained capacity computation,” in Proc. IEEE Int. Symp. Information
Theory, Seattle, WA, Jul. 2006, pp. 1199–1203.

[14] Z. Nagy and K. Zeger, “Capacity bounds for the hard-triangle modes,”
in Proc. IEEE Int. Symp. Information Theory, Chicago, IL, Jun./Jul.
2004, p. 162.

[15] ——, “Asymptotic capacity of two-dimensional channels with check-
board constraints,” IEEE Trans. Inf. Theory, vol. 49, no. 9, pp.
2115–2125, Sep. 2003.

[16] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes
for the hard-square model,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp.
1166–1176, Mar. 2001.

[17] M. Schwartz and T. Etzion, “Two-dimensional cluster-correcting
codes,” IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 2121–2132, Jun.
2005.

[18] W. Weeks and R. E. Blahut, “The capacity and coding gain of cer-
tain checkerboard codes,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp.
1193–1203, May 1998.

Secret Key Capacity for Optimally Correlated Sources
Under Sampling Attack

Jun Muramatsu, Member, IEEE, Kazuyuki Yoshimura,
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Abstract—The capacity for secret key agreement for permutation-in-
variant and symmetric sources under a sampling attack is investigated.
The supremum of the normalized secret key capacity is introduced, where
the supremum is taken over all permutation-invariant sources or all
symmetric sources and the normalized secret key capacity is the secret
key capacity divided by the description length of the symbol. It is proved
that the supremum of the normalized secret key capacity bound under
a sampling attack is close to 1=m for permutation-invariant sources and
O(1=m) for symmetric sources, where and m is the number of Eve’s
sources.

Index Terms—Permutation-invariant source, sampling attack, secret
key agreement, secret key capacity, secret key capacity bound, symmetric
source.

I. INTRODUCTION

In this correspondence, we consider a situation in which two le-
gitimate parties Alice, Bob, and an eavesdropper Eve have respective
correlated sequences which are the outputs of a correlated source. To
transmit messages securely, Alice and Bob have to agree on a secret
key. Secret key agreement is a procedure for agreeing on a secret key
by exchanging messages over a public channel. Maurer [8] defined se-
cret key capacity, which is the least upper bound for the key generation
rate of the secret key agreement, and presented an upper and a lower
bound for the secret key capacity. Secret key capacity is studied in [1],
[3], [9], [13], [4], [5]. It should be noted here that secret key agreement
has many variations that have been reported in many papers.

In this correspondence, we consider the situation where a trusted
server distributes correlated random sequences to many and unspecified
users.

Pairs of users can perform secret key agreement using the random
sequences that they obtain from the server. We consider two cases of
this situation. In the first case, the server distributes correlated random
sequences via secure mutually independent noiseless channels. In the
second case, the server broadcasts a random sequence to all users via
noisy channels. In this case, the users obtain sequences which have
correlations depending on the properties of the noisy channels. This
case corresponds to the satellite scenario introduced by Maurer [8].
Formally, this second case is just a special case of the first case.

A critical type of attack in these situations is sampling attack
whereby Eve obtains more sequences than Alice or Bob to increase
her information about the sequences obtained by Alice and Bob.
Under sampling attack, the secret key capacity decreases with the
number of Eve’s samples. In particular, for the source studied in [8],
[11], the secret key capacity decreases exponentially as the number
of Eve’s samples increases. This is obviously a critical shortcoming
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