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Quasi-Perfect Codes With Small Distance
Tuvi Etzion, Fellow, IEEE, and Beniamin Mounits

Abstract—The main purpose of this paper is to give bounds on
the length of the shortest and longest binary quasi-perfect codes
with a given Hamming distance, covering radius, and redundancy.
We consider codes with Hamming distance 4 and 5 and covering
radius 2 and 3, respectively. We discuss the blockwise direct sum
(BDS) construction which has an important role in finding these
bounds.

Index Terms—Blockwise direct sum (BDS) construction, cov-
ering, density, packing, quasi-perfect codes.

I. INTRODUCTION

L ET and let denotes the set of all binary
words of length denotes the set of all words

with even weight, and denotes the set of all words
with odd weight. For denotes the Hamming
distance between and . A code is a nonempty subset of

. For a code , we denote the minimum Hamming distance
(or distance in short) of by , i.e.,

The packing radius of the code is

and the covering radius of the code is

An code is a binary code of length , distance ,
covering radius , and codewords. An code is a
code with covering radius and distance . The redundancy
of an code is defined by . The sphere
of radius around a word is defined by

If the distance of an code is , then
the spheres with radius around the codewords are disjoint and
they cover . Such codes are called perfect. The only binary
perfect codes are

• codes for each ;
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• repetition codes for each ;
• codes for each ;
• the Golay code.
A code is called quasi-perfect if its packing radius is and

its covering radius is , for some nonnegative integer , i.e.,
the spheres with radius around the codewords are disjoint, and
the spheres with radius cover . Clearly, the distance of
such code is or . Codes with covering radius
and distance can be obtained easily, e.g., by adding any subset
of distinct words to a code. Codes with
covering radius and distance can be also easily obtained.
Any code with covering radius is quasi-perfect. Therefore,
quasi-perfect codes with covering radius are not interesting
in this context. Quasi-perfect codes with covering radius were
extensively studied [1], [3]–[6], [15]. Quasi-perfect codes with
covering radius were studied in [5], [7], [10], [15]–[17]. The
only known quasi-perfect codes with covering radius greater
than are the extended Golay code with and ,
and the repetition code of length , with and .

There are a few interesting questions concerning quasi-per-
fect codes.

• Construction of such codes for all possible lengths for a
given radius and distance.

• What is the sparse and the dense code for a given length,
radius, and distance?

• For a given redundancy, radius, and distance, what is the
longest and the shortest code?

Note that these questions are closely related. As we did not
find any interesting quasi-perfect codes with noninteger redun-
dancy, we consider only integer redundancies. In this paper, we
mainly consider the last question, especially for
and , respectively. For this purpose, we need the
following definitions. The length of the shortest code with cov-
ering radius , distance , and redundancy , will be denoted by

. The length of the longest code with covering radius
, distance , and redundancy , will be denoted by .

The covering density of an code is defined by

and its packing density is defined by

For a family of codes
the covering (packing) density of the

family is defined by

if the limit exists.
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The rest of the paper is organized as follows. In Section II, we
present the well-known blockwise direct sum (BDS) construc-
tion [8] which has a significant role in all our constructions. We
present the Hamming and Preparata codes which are used in
our constructions. These codes were used with the BDS con-
struction in [5] and the method was developed in [15] to obtain
new codes. In this paper, we further develop the technique by
using new codes to obtain some new better quasi-perfect codes.
In Section III, we discuss quasi-perfect codes with covering ra-
dius and distance . In Section IV, we give new constructions
for and and analyze the codes obtained by these
constructions. In Section V, we conclude with a discussion and
a list of open problems.

II. PRELIMINARIES

A. The Blockwise Direct Sum (BDS) Construction

Definition 1: [2] A family of codes
has subnorm if

holds for all .

BDS Construction:
Suppose we are given four codes: an code ,
an code , an code

, and an code with the following
properties:

• is a union of disjoint codes with the parameters
of

• is a union of disjoint codes with the parameters
of

• has subnorm ;
• has subnorm .

Then the BDS of and is the following code :

The given construction is a combination of the constructions
given in [2], [8], [9], [13].

Theorem 1: [2], [9], [13] The code of the BDS
construction has the following parameters:

B. The Hamming and the Preparata Codes

Several families of codes will be used in the BDS construc-
tion. Four families will be used more often.

1) Hamming Codes
The Hamming code of order , is a

code. is the
family of codes which contains the Hamming code and its

cosets. The subnorm of this family is . Any family
which is a nonempty proper subset of this family has subnorm .

2) Extended Hamming Codes
The extended Hamming code of order is a

code, obtained by adding an even parity
bit to .

is the family of codes which contains the extended Hamming
code and its cosets. The subnorm of this family is .

is the family of codes which contains and its
cosets with even weight. The subnorm of this family is

also .

3) Preparata Codes
The Preparata code of order is an even integer,

, is a code. It is well known [17] that
there exist translates of whose union is .
Let be the family which consists
of these translates. It is proved in [2, p. 111] that the sub-
norm of this family is . Let be
the family which consists of the translates whose union
is , and

for each .

Lemma 1: If are two different even-weight vectors of
length such that then there exist
words in at distance from .

Proof: Each even coset of , and in particular,
, has words of weight . Hence, there are

words in at distance from . Therefore, there exist
words in at distance from .

Corollary 1: If are different even-weight vectors
of length such that ,
then the family of codes

has subnorm equal to .

4) Punctured Preparata Codes
The punctured Preparata code of order is an even
integer, , is a code obtained from

by deleting the last coordinate (by deleting another co-
ordinate we obtain an equivalent code). Let

be the family of translates of whose union is
. It is proved in [2, p. 111] that the subnorm of this

family is . Furthermore, let , be
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the code obtained from by deleting the last coordinate,
i.e., for each

(1)

The reader interested in properties of the partitions of the Ham-
ming and the extended Hamming codes into translates of the
punctured Preparata and Preparata codes, respectively, is re-
ferred to [5, Lemma 1], [17, Theorems 1, 2, and Corollary 1].

III. CODES WITH COVERING RADIUS

If and then . These values are
attained by the extended Hamming codes. Next, we give upper
bounds on . The first two cases are of known codes.
Case A: If is even, , then

. The codes which attain this bound
are obtained by the BDS construction [15, Construction 4.22,
Remark 4.23], where

The obtained codes will be denoted by ; is a

code with .
Case B: If is even, ,
then . The codes which at-
tain this bound are linear
codes which were constructed in [6]. The covering density of
this family is .

In the next two cases the known upper bounds on
are improved.
Case C: If is even, ,
then . The codes which attain
this bound are a variation of codes given in [5]. Let

, where the subscript is taken
modulo and denotes a sequence of ’s. Note that

is the code designed in Case A. It is easy to verify
that is a code
and the family has subnorm .
The codes which attain the bound are obtained by the BDS
construction, where

The obtained codes will be denoted by is a
code with

The previous bound was attained by family of linear codes
whose covering density is [6].

For the last case we need the following lemma.

Lemma 2: If is partitioned into subsets
and is partitioned into subsets then

where is taken modulo , and

iff .

Definition 2: An code has the space property if
there exist disjoint codes (one of which is ) whose
union is .

Lemma 3: has the space property.
Proof: By Lemma 2 and properties of code families from

Case C

can be partitioned into codes with parameters of , where

and

in Lemma 2. Since

for some , it is easy to verify that can be parti-
tioned into codes with the parameters of .
Hence, has the space property.

Case D: odd, and . Let
odd, , be the length of the shortest

code with redundancy which has the space
property. We claim that for

The codes which attain this bound are obtained by using modi-
fication and developing the ideas of [15, Construction 4.24]. We
use the BDS construction, where
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TABLE I

is a code with the space property which attains and
. By Lemma 2, we can partition

into codes with the parameters of the obtained code.
Hence, the code obtained by the BDS construction has redun-
dancy and the space property. Therefore, for
we obtain

with the initial conditions (which is attained by the
extended Hamming code of length ) and
for (by Case C, Lemma 3, and since [1]
which is attained by linear code, which obviously has the space
property).

It is now easy to verify that

and hence,

where is odd and . Hence, this is a

code. The density of this family of codes is , i.e., these codes
are asymptotically perfect. The first family of asymptotically
perfect codes was obtained by Struik [15, Construction
4.24]. For the parameters of our codes are the same as
those of Struik. For , our codes are shorter than the codes
of Struik. For our construction gives the code of length
274 whereas the code obtained in [15, Construction 4.24] has
length , and for odd, , the
code of Struik has the following parameters:

IV. CODES WITH COVERING RADIUS

Table I describes parameters of the known infinite families of
codes. If there exist a few families with the same param-

eters, we mention only one of them.
For small redundancies there are codes obtained by Wagner

[16] via computer search, and codes constructed in [17].

A. Constructions of New Codes

Construction A: Let be even integers such that
. Define

Note that by definition

for each . By Lemma 1, Corollary 1, and
Theorem 1 we have the following.

Theorem 2: is a

code, where are even integers greater than and
.

The code coincides with the code defined
in [5]. We have which is the smallest
covering density for known family of codes with covering radius

. The code coincides with the code of Zaitsev et al.
[17], which was also constructed in [13]; .
The code is the longest known code with distance
and redundancy . The punctured Preparata codes are the only
ones known to have better packing density for family of codes
with minimum distance .

The only known infinite family of codes with odd re-
dundancy is the punctured Preparata codes. In the next construc-
tion we obtain more infinite families of such codes.

For the next construction we need the following lemma.

Lemma 4: For any integer , let
be a family of codes, where is an code for
each . If

is an code, then and
.

Proof: Since the covering radius of is , it follows by
the sphere-covering bound that
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Fig. 1.

i.e.,

(2)

On the other hand, since the distance of is , we also have by
the sphere-packing bound that

(3)

By (2) and (3) we have

Therefore,

Thus, . Let’s denote the maximal redundancy of
a code of length with covering radius by . Since

it follows that

Thus, .

Construction B: For , let be an
code, where . For odd,

, let , be an code, such
that

(4)

We construct the following codes:

for , and
, where is taken modulo and is taken modulo

, and

for and .
In the following theorem, we explain step by step how the

codes of Construction B are obtained.

Theorem 3: is an code and

, is an code, such that

where and .
Proof: For convenience, we denote by , and

by . By the definition of Construction B

for , and , where is taken
modulo . Fig. 1 describes the codes which are obtained,
where for a given , the codes are
written in row .

Next, we consider the following codes:

(5)

for and , where
is taken modulo , and is taken modulo . Fig. 1
describes the codes corresponding to the case . For each

we obtain a similar array. Fig. 2 describes



ETZION AND MOUNITS: QUASI-PERFECT CODES WITH SMALL DISTANCE 3943

Fig. 2.

the codes which are obtained for , where for a
given , the codes are written in row .

Now, for

(6)

Therefore, from (1), (4), (5), and (6) it follows that

(7)

and

(8)

where is taken modulo , and is taken modulo .
Note that is the union of all the codes which appear in Fig. 1.

By Lemma 4, . If , then it follows from
(8) that , and we have considered
all the codes obtained in Construction B. If ,
then we have considered the codes from Construction B which
correspond to . Clearly

(9)

For and
, where is taken modulo and is taken modulo

, consider the code

For and consider the
code

One can easily verify from (7) that

(10)

where is taken modulo . Thus, it follows from (8)–(10)
that

It is easy to verify that for , and hence,

.
Next, we compute the parameters of these codes.

, and hence, the subnorm of the family
is . The subnorm of the family

is . Thus, by Theorem 1, the
code has the following parameters:
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, and hence, the subnorm of the family
is . On the other hand, the subnorm of

family is if , and
if . Therefore, by Theorem 1, the code has the

following parameters:

Note that and have the same parameters as and ,
respectively, for all and . Let us denote and

. Furthermore, by definition

Let , where , be the
Fibonacci’s sequence.

Theorem 4: For is odd, let , be
an code, where

For odd, , let be an
code, such that

Then there exists an infinite family of codes , where
is a code with the following parameters:

where and , for
.

Proof: We apply Construction B recursively with initial
two sets of codes

and

and obtain two sets of codes and
for each , where is

an code and is an code,
with and
by Theorem 3. Then the parameters of the obtained codes satisfy
the following recursive equations:

with initial conditions . One can
verify that the solutions for these recursive equations are

and

for , where .

Corollary 2: The codes , obtained
in Theorem 4 have odd redundancy.

The following examples apply Construction B recursively.

Example 1: Take be and be . In this
case, and . Note
that these codes meet the two bounds of Lemma 4. Thus, by
Theorem 4, we have the following.

Corollary 3: For each even integer there exists
an infinite family of quasi-perfect codes ,
where is an

code.

Example 2: Take be the code , and
be the punctured Hamming code . In this case,

and . Thus, we obtain an infinite family of
codes , where , is an

code.

Example 3: Let be the linear code , obtained
by Wagner [16] via computer search. The following matrix is a
parity-check matrix for this code which is equivalent to one
found by Wagner

Let be the linear code with the following
parity-check matrix:

which obtained by deleting seven rows from . In this case,
and . Thus, we obtain an infinite family

of codes , where , is an

code.
The following construction is due to Zaitsev et al.[17].
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TABLE II

Construction C: Let be an odd integer and
be disjoint codes, such that

Define

Theorem 5: [17] The code defined by Construction C is an
code, with packing density

greater than .

All the codes obtained in Theorem 4 (e.g., the codes from
Examples 1–3) can be used in Construction C. Hence, we obtain
many codes with various lengths and density greater than .

To end this section, we give another construction for
codes. The following lemma is well known [12], [14].

Lemma 5:

Lemma 6: For every even integer is a
union of disjoint codes.

Proof: Since

it follows by Lemma 2 that

where

is the code defined in [5] with parameters
, and by Lemma 5

which completes the proof.

Let and be a set of dis-
joint codes such that

Corollary 4: The family of sets
has subnorm .

Construction D: For each even define

By Theorem 1 we have the following.

Theorem 6: is a

code.

B. Dense and Sparse Codes

Table II presents the known lower bounds on (top)
and the known upper bounds on (bottom).

The only codes with odd redundancy which were known are
the punctured Preparata codes and the Wagner’s codes [16].
We have constructed many new codes with odd redundancy
(see Corollary 2). In fact, no family of codes with redundancy

was known. The code has
redundancy . When and

, then . In this way, we ob-
tain codes for each redundancy , where
or , and so on. Unfortunately, the packing den-
sity of this family is and the covering density is (unless

).
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V. CONCLUSION AND OPEN PROBLEMS

Several new constructions for quasi-perfect codes with ra-
dius and distance , respectively,
are given. We summarized by presenting the known bounds on

and . The BDS construction has an im-
portant role in our constructions. The distance and covering ra-
dius of the code obtained is computed by Theorem 1. But the
bounds of this theorem are not always tight as can be seen from
the following example. Let be a linear code and

be the family of codes which contains
and its cosets. Let be the set

of codewords of with even weight. The code
is a code. This can be verified by noting that if is the
parity-check matrix of , then

is the parity-check matrix of . The subnorm of the
family is and one can verify that the
subnorm of the family is at least (unless

is the extended Hamming code). Thus, by Theorem 1, the
distance of the code is at least and the covering
radius is at most , where , and hence the bounds of
Theorem 1 are not tight. This leads to the obvious question when
the bounds of Theorem 1 can be improved. We conclude this
paper with a list of open problems and more suggestions for
future research.

Codes with large distance: Except for the repetition codes, the
extended Golay code, and the punc-

tured Golay code no quasi-perfect codes are known with dis-
tance greater than . Thus, the first problem we suggest is to
find such codes or to prove that they do not exist.

Codes with and : In this case, we could not find
shorter codes than the nonlinear codes obtained in Section
III. However, for is even,

, the linear codes were
constructed in [3] with covering density , which is smaller
then the one obtained by Case B in Section III. The longest code
with redundancy is the Hamming code of length (for
which ). Given a linear code, one can obtain
an code for any such that
by adding distinct columns to the parity-check matrix of the

code. Thus, the main two problems which remain
are to find linear and nonlinear codes shorter than the known
ones.

Codes with and : We would like to see improve-
ments on the bounds given in Section III. The main problem we
suggest is to prove or disprove that there exists an such that
for any given there exists a code of length . The

redundancy of these codes might not be an integer. Also, we
note that linear codes correspond to complete caps
in projective spaces [4].

Codes with and : We would like to see any new
codes, especially families with redundancy congruent to

or modulo and finite covering density, and with redundancy
congruent to modulo and finite packing density.
Codes with noninteger redundancies: As we mentioned in the

Introduction, all our codes have integer redundancies. Finding
infinite families of codes with noninteger redundancies is an
interesting task for itself.
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