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The Depth Distribution—A New
Characterization for Linear Codes

Tuvi Etzion, Member, IEEE

Abstract—We apply the well-known operator of sequences, the deriva-
tive DDD, on codewords of linear codes. The depth of a codewordc is the
smallest integer i such that DDDic (the derivative applied i consecutive
times) is zero. We show that the depth distribution of the nonzero
codewords of an[n; k] linear code consists of exactlyk nonzero values, and
its generator matrix can be constructed from anyk nonzero codewords
with distinct depths. Interesting properties of some linear codes, and a
way to partition equivalent codes into depth-equivalence classes are also
discussed.

Index Terms—Depth, depth distribution, depth-equivalent, derivative,
generator matrix, linear code.

I. INTRODUCTION

LetW = w1w2w3 � � � be a word (finite or infinite) over an alphabet
of sizeq: The derivativeof W is defined byw2 � w1; w3 � w2 � � �

where the subtraction is done either in the additive groupZq or in
GF(q) if q is a power of a prime. The derivative was discussed by
various authors [6], [7], [9] and was especially used in connection
with complexity of sequences [2]–[5]. All these papers are dealing
with the case where the sequences are over GF(q): Moreover, except
for [2] and [4], in all these papers the sequences are over GF(2):

The case where the sequences are overZq; q a power of a prime
was discussed in [1]. In this correspondence we will connect for
the first time between the derivatives of words and linear codes. An
[n; k] code over GF(q) is a linear subspace of dimensionk of words
of length n over GF(q): An [n; k; d] code is an[n; k] code with
minimum Hamming distanced:

Henceforth, all words will be finite and over a finite fieldF =

GF(q): For � 2 GF(q) let [�i] denote a word withi consecutive
appearances of� (distinguished from�i which is theith power of
�). For a wordx = (x1; x2; � � � ; xn) over GF(q) and an element
� 2 GF(q), we define�x = (�x1; �x2; � � � ; �xn): We define two
operatorsEEE andGGG from Fn to Fn�1 as follows:

EEE: (x1; x2; � � � ; xn)! (x2; x3; � � � ; xn)

GGG: (x1; x2; � � � ; xn)! (x1; x2; � � � ; xn�1):

The derivativeDDD: Fn
! Fn�1 is defined asDDD = EEE �GGG; i.e.,

DDD(x1; x2; � � � ; xn) = (x2 � x1; x3 � x2; � � � ; xn � xn�1):

Note, thatDDD is a linear operator, i.e.,

DDD(x+ y) =DDD(x) +DDD(y)

and

DDD(�x) =�DDDx

for x; y 2 Fn and � 2 F:
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Definition 1: The depth of a wordc of lengthn, depth(c), is the
smallest integeri such thatDDDic = [0

n�i
]: If no suchi exists, then

the depth ofc is defined to ben:
As an immediate consequence of the definitions, we have that the

depth of a wordc of lengthn is i if and only if DDDi�1c = [�n�i+1],
for a nonzero element� 2 GF(q): It is also clear that the depth of
a word of lengthn is at mostn:

Definition 2: Given a codeC of lengthn, let Di be the number
of codewords of depthi: The numbersD0; D1; � � � ; Dn are called
the depth distribution ofC:

In this correspondence we show that the depth distribution is an
interesting parameter of linear codes. In Section II we will show that
the nonzero codewords of each[n; k] code have exactlyk nonzero
values in their depth distribution. We also show that anyk codewords
from distinct nonzero depths can be chosen as the rows of a generator
matrix for the code. In Section III we discuss the depth distribution of
some binary codes, self-dual codes, the Hamming code, the extended
Hamming code, and the first-order Reed–Muller code. Finally, we
show how the set of equivalent codes can be partitioned into depth-
equivalence classes.

II. ON THE DEPTH DISTRIBUTION OF A LINEAR CODE

The main result of this section is a proof that the depth distribution
of the nonzero codewords of an[n; k] code consists of exactlyk
nonzero values. This fact will enable us to obtain some interesting
results in this and the next section.

Lemma 1: If c1 is a word of lengthn and depthi, andc2 is a word
of lengthn and depthj; j < i, thenc = c1+c2 is a word with depthi:

Proof: Since c1 is of depth i, it follows that DDDi�1c1 =

[�n�i+1]: Sincec2 is of depthj; j < i; it follows by definition that
DDDi�1c2 = [0n�i+1]: ThusDDDi�1(c1 + c2) = [�n�i+1], and hence
we have thatc = c1 + c2 has depthi:

Lemma 2: If c1 is a word of lengthn over GF(q) and � is a
nonzero element of GF(q) then�c1 andc1 have the same depth.

Proof: This is an immediate observation from the fact that by
definition of the derivative we haveDDD(�c1) = �DDDc1:

The immediate consequence of Lemmas 1 and 2 is the following
corollary.

Corollary 1: If c1; c2; � � � ; ck are words of lengthn and distinct
depths thenc1; c2; � � � ; ck are linearly independent.

Lemma 3: Let c1 and c2 be two words of lengthn and depthi
over GF(q): If � is a primitive element in GF(q) then there exists
an integerj; 0 � j � q�2, such thatc1+�jc2 is of depthm;m< i:

Proof: By the definition of the depth,DDDi�1c1 = [�n�i+11 ] for
some nonzero�1 2 GF(q) and DDDi�1c2 = [�n�i+12 ] for some
nonzero�2 2 GF(q): Let j1 and j2 be two integers such that
0 � j1; j2 � q � 2; �1 = �j ; and ��2 = �j : Let j3 be an
integer such that0 � j3 � q � 2 and j3 � j1 � j2 (mod q � 1):

Since�j �j = �j ; it follows thatDDDi�1(c1 + �j c2) = [0n�i+1]

and hencec1 + �j c2 has depth less thani:
Theorem 1: The depth distribution of the nonzero codewords of

an [n; k] linear code consists of exactlyk nonzero values.
Proof: By Corollary 1, the depth distribution of the nonzero

codewords of an[n; k] code consists of at mostk nonzero values.
Assume that the depth distribution of the nonzero codewords of an
[n; k] codeC over GF(q) consists ofm;m<k; nonzero values. Let
C1 be the subcode that consists of theqm linear combinations ofm
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nonzero codewordsc1; c2; � � � ; cm; where

depth (cm)>depth (cm�1)> � � � >depth (c2)>depth (c1):

Let c be a codeword inC n C1 with the smallest depth. Without
loss of generality we can assume thatdepth (c) = depth (ci), for
some i; 1 � i � m: If � is a primitive element in GF(q) then
clearly, �jci + c is a codeword inC n C1 for all 0 � j � q � 2:

By Lemma 3 there exists an integerr; 0 � r � q � 2; such that
depth (�rci + c)<depth (c), a contradiction to the assumption
that c is a codeword with the smallest depth inC n C1: Thus the
depth distribution of the nonzero codewords ofC consists of exactly
k nonzero values.

An immediate consequence from Theorem 1 and Corollary 1 is
Corollary 2: Any k codewords of an[n; k] code over GF(q) with

distinct nonzero depths can form a generator matrix of the code.

III. M ORE PROPERTIES ANDAPPLICATIONS

An important tool in the understanding of the properties of words
of certain depths, and for using the depth as a tool is an algorithm
for computing the depth of a word. We will give the algorithm for
words over GF(2): This algorithm is a generalization of the algorithm
of Games and Chan [5] for computing the linear complexity of a
cyclic word of length2n: A generalization for GF(q); q > 2; is quite
simple and will follow the lines presented in [4]. The algorithm which
follows is presented in a recursive way.

Algorithm A: LetV = (v1; v2; � � � ; vn) be a binary word of length
n and letr be the largest integer such that2r <n: Let

V
0
=(v1; v2; � � � ; v2 )

and

U =(v1 + v2 +1; v2 + v2 +2; � � � ; vn�2 + vn):

We compute the functiond(V ) recursively as follows:
If V = [0n] then d(V ) = 0:

If V = [1n] then d(V ) = 1:

If U = [0n�2 ] then d(V ) = d(V 0):

If U 6= [0n�2 ] then d(V ) = 2r + d(U)

Theorem 2: If V = (v1; v2; � � � ; vn) is a binary word then in
Algorithm A we haved(V ) = depth (V ):

Proof: If V = [0n] then obviouslydepth (V ) = 0 and if
V = [1n] then obviouslydepth (V ) = 1: Let r; U; and V 0 be
defined as in the algorithm. We remind thatdepth (V ) � n and
depth (V ) = d if and only if(EEE-GGG)d�1 = [1n�d+1]: Also note that
over GF(2) we have(EEE � GGG)2 = EEE2 � GGG2 since 2

k
is

even for1 � k � 2m � 1: Therefore, clearlyU 6= [0n�2 ] if and
only if depth (V )> 2r and hencedepth (V ) = 2r + depth (U):

U = [0n�2 ] if and only if depth (V ) � 2r. We distinguish between
two cases.

Case 1: depth (V )> 2r�1: Let

V
�
=(v1; v2; � � � ; vn; vn�2 +1; vn�2 +2; � � � ; v2 )

= (X1; X2; X3; X4);

whereXi; 1 � i � 4; is a word of length2r�1: SinceU = [0n�2 ]

and by the definition ofV � it follows thatX1 = X3 andX2 = X4:

Hence

(EEE �GGG)
2

V
�
=(X1 �X2; X2 �X3; X3 �X4)

= (X1 �X2; X1 �X2; X1 �X2)

and thusdepth (V ) = depth (V 0):

Case 2: depth (V ) � 2r�1: Let

V
�
=(v1; v2; � � � ; vn; vn�2 +1; vn�2 +2; � � � ; v2 )

= (X1;X2; X3; X4)

whereXi; 1 � i � 4; is a word of length2r�1: Sincedepth (V ) �
2r�1; it follows that

(EEE �GGG)
2

V
�
= (EEE

2 �GGG
2

)V
�
= [0

2 +2

]

and henceX1 = X2; X2 = X3; andX3 = X4: Thusdepth (V ) =

depth (V 0):

Thus by the recursive definition of the functiond(V ) in Algorithm
A we haved(V ) = depth (V ):

If n = 2m then Algorithm A for computing the depth coincides
with the Games and Chan algorithm [5] for finding the linear
complexity of a cyclic sequence. Hence we have the following
corollary.

Corollary 3:: If V is a binary word of length2n then its depth as
a noncyclic word is equal its linear complexity as a cyclic word.

In all the following lemmas we consider only binary words and
codes, unless stated otherwise. The first lemma characterizes some
of the properties of words with length2n (cyclic or noncyclic) and
certain depths. Some of these properties are well known [3] and all
of them can be easily derived from Algorithm A for computing the
depth of a word or the Games and Chan algorithm [5].

Lemma 4:: Let v be a word of length2n:

1) v has depth2n if and only if v has odd weight, where the
weight of a wordv is the number of nonzero entries inv:

2) v has depth 2i + 1 if and only if v has the form
(XXXX � � �XX), where X is a word of length 2i,
andX is the binary complement ofX:

3) v has weight two only ifv has depth�n�1
i=m 2i = 2n � 2m,

for somem; 0 � m � n � 1:

Next, we intend to show a characterization of the depth distribution
for certain kinds of codes.

Definition 3: If C is an [n; k] code over GF(q), its dual or
orthogonal codeC? is the set of vectors which are orthogonal to all
the codewords ofC: If C = C? thenC is called a self-dual code.

In the next lemma we make use of Corollary 3, i.e., the fact that
the depth and the linear complexity of a binary word of length2n

coincide. First, we extend the definitions of the operatorsEEE andDDD:
For a binary wordx = (x1; x2; � � � ; x2 ); the shift operator ~EEE is
defined by

~EEEx = (x2; x3; � � � ; x2 ; x1)

and the operator~DDD is defined by

~DDD=(~EEE+1)x=(x2+x1; x3+x2; � � � ; x2 +x2 �1; x1+x2 ):

The linear complexity of a binary wordx of length 2n is c if
( ~EEE + 1)c�1x = [12 ]:

Lemma 5: Let v be a nonzero word of length2n and depth
i; 1 � i � 2n�1, andu be a word of length2n and depth2n+1� i:

Then u and v are not orthogonal.
Proof: We will prove that for eachi; 1 � i � 2n�1; each word

of length2n and depthi is not orthogonal to any word of length2n

and depth2n + 1� i: The proof is by induction. The basis isi = 1;
the only word of depth1, is [12 ], and by Lemma 4 1), a word of
length2n has depth2n if and only if it has odd weight. Hence, the
claim follows. Assume the claim is true fori; 1 � i � 2n�1�1, i.e.,
each word of length2n and depthi is not orthogonal to any word
of length2n and depth2n + 1 � i: Let v = (v1; v2; � � � ; v2 ) be a
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word of length2n and depthi+ 1, andu = (u1; u2; � � � ; u2 ) be a
word of length2n and depth2n � i: By definition

~DDDv = (v1 + v2; v2 + v3; � � � ; v2 �1 + v2 ; v2 + v1)

and by Lemma 4 1) we have that�2
j=1 uj is even, and hence there

exist two wordsY andY such that~DDDY = ~DDDY = u, where

Y =

2

j=1

uj ; u1; u1 + u2; u1 + u2 + u3; � � � ;

2 �1

j=1

uj :

It is easy to see that

( ~DDDv) � ( ~EEEY ) = ( ~DDDv) � ( ~EEEY ) =

2

j=1

vjuj

depth (u) = depth (~EEEu) sinceu is of length2n and by Corollary
3 its depth is equal its linear complexity as a cyclic word. Since
depth (u) = depth (~EEEu), it follows that ~DDDv andY are orthogonal
if and only if v andu are orthogonal. But, by the induction assumption
we have that~DDDv andY are not orthogonal (since~DDDv has depthi and
Y has depth2n + 1� i) and hencev andu are not orthogonal.

Corollary 4:: If fDi ; Di ; � � � ; Di g is the set of nonzero
values of the depth distribution of a self-dual binary code of length
2
n then for any two integerj andm; ij + im 6= 2

n
+ 1:

Corollary 5: In a self-dual code of length2n we haveD0 = 1

and for eachi; 1 � i � 2
n�1; eitherDi = 0 andD2 +1�i 6= 0, or

Di 6= 0 and D2 +1�i = 0:

The first-order Reed–Muller code in an[2n; n + 1; 2n�1] linear
code. This code is unique, i.e, all linear codes with the same
parameters are equivalent to the first-order Reed–Muller code.

Lemma 6: For any givenn, any generator matrix withn+1 rows,
where rowi; 1 � i � n; is any word of length2n and depth2i�1+1,
and rown+1 is the only word of length2n and depth1, is a generator
matrix of the[2n; n + 1; 2n�1] first-order Reed–Muller code.

Proof: By Corollary 1 all then+ 1 rows are linearly indepen-
dent. By Theorem 1 the depths of the nonzero codewords are1 and
2
j
+ 1; 0 � j � n � 1: Therefore, by Lemma 4 2), the weights of

all codewords, which are not[02 ] and [12 ] is 2
n�1 and the lemma

follows.
The Hamming code is the unique[2n � 1; 2n � n � 1; 3] code.

The extended Hamming code is the unique[2
n; 2n� n� 1; 4] code.

The code which is orthogonal to the extended Hamming code is the
first-order Reed–Muller code. For more information on these codes
the reader is referred to [8].

Lemma 7: For any givenn, any generator matrix with2n�n�1

rows which contains any word of length2n and depthi for each
i; 1 � i � 2

n � 1; i 6= 2
n � 2

j ; for eachj; 0 � j � n � 1;

as a row, is a generator matrix of the[2n; 2n � n � 1; 4] extended
Hamming code.

Proof: Follows immediately by Lemmas 1 and 4 3).
Similarly to Lemma 7 we can obtain the following lemma.
Lemma 8: For any givenn, any generator matrix with2n�n�1

rows which contains any word of length2n� 1 and depthi for each
i; 1 � i � 2

n�1; i 6= 2
n�2

j ; for eachj; 0 � j � n�1; as a row,
is a generator matrix of the[2n � 1; 2n � n� 1; 3] Hamming code.

Proof: One can verify from the algorithm for computing the
depth of a word that a word of length2n � 1 and weight either one
or two has depth2n � 2

j for somej; 0 � j � n � 1: The lemma
follows now from Lemma 1.

Another application for the depth distribution is in partitioning and
classification of equivalent codes into disjoint classes. LetFn

q be the
set of all words of lengthn over GF(q): Two codesC1; C2 � Fn

q

are said to beisomorphicif there exists a permutation�, such that
C2 = f�(c): c 2 C1g: They are said to beequivalentif there exists

a vectora and a permutation�, such thatC2 = fa+�(c): c 2 C1g:
Since we discuss linear codes, it follows that all equivalent codes
can be obtained by then! permutations on then coordinates. If
r out of the n! permutations result in a code equal toC1 then
there existn!=r different linear codes equivalent toC1: If we want
further to partition thesen!=r codes into new equivalence classes,
one simple method is to use the depth distribution of the codes.
We will define two linear codes asdepth-equivalentif they are
isomorphic and have the same depth distribution. This definition can
give us new interesting results. For example, there are exactly four
depth-equivalence classes for the[8; 4; 4] extended Hamming code
which is also a self-dual code. The first class has depth distribution
D0 = 1; D1 = 1; D2 = 2; D3 = 4; and D5 = 8: The second
class has depth distributionD0 = 1; D1 = 1; D2 = 2; D5 = 4; and
D6 = 8: The third class has depth distributionD0 = 1; D1 =

1; D3 = 2; D5 = 4; and D7 = 8: The fourth class has depth
distribution D0 = 1; D1 = 1; D5 = 2; D6 = 4; and D7 = 8:

We do not know all the feasible depth distributions for the[16; 11; 4]

extended Hamming code, or any other interesting codes.
Roth [10] has observed that there are other possible alternate

definitions of “depth”. Let� be an element in GF(q): Let C be
a linear code over GF(q); c = (c0; c1; � � � ; cn�1) be a codeword in
C; andc(x) = �

n�1

j=0
cjx

j the polynomial associated withc: We say
that c has “depth”i, if i is the smallest integer such that

(x� �)
i
c(x) � 0(mod (x� �)

n
):

Similar results to the ones obtained in this correspondence can be
obtained by using this definition for the “depth.” If� = 1 and n

is a power ofq then the depth of a codewordc by both definitions
is the same. It is intriguing to find connections between these two
definitions, more connections between the linear complexity and the
depth of a word, to find the depth distribution of other interesting
codes, and more applications for the concept of depth associated
with linear codes.
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