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Abstract 

We consider optimal constant weight codes over arbitrary alphabets. Some of these codes are 
derived from good codes over the same alphabet, and some of these codes are derived from 
block design. Generalizations of Steiner systems play an important role in this context. We give 
several construction methods for these generalizations. An interesting class of codes are those 
which form generalized Steiner systems and their supports form ordinary Steiner systems. 
Finally, we consider classes of codes which are MDS constant weight codes. 

1. Introduction 

Recently, lot of research was done on constructions of nonbinary codes, which are 
either not linear or with elements not over some Galois field, e.g. [10, 19]. As in the 
binary case constant weight codes might have an important role in these codes. There 
are many well-known binary codes which contain optimal constant weight codes as 
subcodes, or the best-known constant weight codes as subcodes. Some of these 
optimal codes form t-designs. This was the first motivation for this paper. One of the 
good examples for codes which contain t-designs is the binary Hamming code. It is 
well known that the codewords of weight 3 in the binary Hamming code form 
a Steiner triple system, and the codewords of weight 4, in the extended binary 
Hamming code form a Steiner quadruple system. Obviously, we can ask what can be 
said about the codewords of weights 3 and 4 in the nonbinary Hamming code. The 
codewords of weight 7 in the binary Golay code form a Steiner system S(4, 7, 23) and 
the codewords of weight 8 in the extended binary Golay code form a Steiner system 
S(5, 8, 24). The supports (the nonzero coordinates) of the codewords of weight 5 in the 
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ternary Golay code form the Steiner system S(4,5, 11), and the supports of the 
codewords of weight 6 in the ternary extended Golay code form the Steiner system 
S(5, 6, 12). But, if we consider the codewords rather than their supports, what can be 
said on the constant weight codes formed from the codewords of weights 5 and 6 in 
the ternary Golay code? MDS codes over GF(q) were extensively studied, and the 
same is true for their combinatorial equivalent orthogonal arrays. The codewords of 
minimum weight in an orthogonal array form an optimal constant weight code. For  
length n and weight w there are (w")(q - 1) codewords in the code, and its minimum 
Hamming distance is w. Codes with these parameters will be called MDS constant 
weight codes. Can we give constructions for these MDS constant weight codes, with 
parameters such that an orthogonal array with the equivalent parameters cannot 
exist? 

We will give a known generalization of t-design and as a special case we modify this 
generalization for Steiner systems. Some generalized Steiner systems will be construc- 
ted from known nonbinary codes. But, as in the binary case we will try to find 
constructions for generalized Steiner systems which cannot be obtained from codes 
over nonbinary alphabet. As the most interesting cases we will consider generalized 
Steiner triple systems, generalized Steiner quadruple systems, and generalized 2- 
designs. Our results can be compared with some similar designs as the H-design and 
the group divisible design. 

The rest of the paper is organized as follows. In Section 2, we give the definition for 
the generalized designs, and we will find the necessary conditions for the existence of 
generalized designs. In Section 3, we will consider the trivial cases, and we will see that 
cases which seems 'trivial' are not always trivial. In Section 4, we will consider 
generalized Steiner triple systems over arbitrary alphabet, and we give a complete 
solution over alphabet with 3 and 4 letters. In Section 5, we will consider generalized 
Steiner quadruple systems and in Section 6 we consider generalized 2-designs. In 
Section 7, we will consider the designs derived from the ternary Golay code and we 
consider an interesting question of double designs, which are codes for which their 
codewords form a generalized Steiner system, and the supports of the codewords form 
a Steiner system. In Section 8, we will discuss MDS constant weight codes. We 
conclude in Section 9 with various open problems which are derived from our 
discussion. 

2. Generalized t-designs 

The definition for a generalized t-design over an arbitrary alphabet will be an 
obvious generalization of the known definition of t-design. Let X be a v-set, whose 
elements are called points. A t-design is a collection of distinct w-subsets (called blocks) 
of X with the property that any t-subset of X is contained in exactly 2 blocks. When 
2 = 1 the design is a Steiner system S(t, w, v). This is also a binary constant weight code 
of length v, weight w, and minimum Hamming distance 2(w - t + 1). 
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A general izat ion of t-design is the H-design which was in t roduced by Hanan i  [11] 
(the no ta t ion  of H-design is due to Mills [17]). An H ( m , q , w , t )  design is a triple 

(X,  G,B) ,  where X is a set of  points  whose cardinali ty is mq, and G = {G1, G2, . . . ,  Gin} 
is a par t i t ion of X into m sets of cardinali ty q; the members  of G are called groups.  

A transverse of G is a subset of X that  meets each group  in at mos t  one point.  The set 

B contains  w-element transverses of G, called blocks, with the p roper ty  that  each 

t-element t ransverse of G is contained in precisely one block. When  q = 1 then 

H(m,  1, w, t) is just a Steiner system S(t, w, m). When w = m this H(m,  q, w, t) is equiva- 

lent to o r thogona l  a r ray  OA(t ,  w, q). An OA(t ,  n, q) is an qt x n matr ix  M, with entries 
f rom a set with q elements, such that  the matr ix  generated by any t columns contains 
each ordered t-tuple exactly once as a row. 

F r o m  the H-design H(m,  q, w, t) we can form a constant  weight code as follows. Let 

G i = { ~ 1 i , ~ 2 i  . . . . .  3(qi}, where o~ai;  the code has a codeword  for each block. The 
length of each codeword  is m and the code is over  an a lphabet  with q + 1 

letters. Assume {a l ,a2  . . . . .  aw} is a block in B (this block will be denoted by 

{ [il , j l  ], [ i 2 , j 2 ] , . . . ,  [iw,jw] }, where a~ = ~j~i.). We form the following codeword:  coor-  
dinate i, 1 ~< i ~ m, has value j, 1 ~<j ~< q, if for some r, 1 ~< r ~< w, ar = aji; all the other  

coordinates  have zero value. The  min imum H a m m i n g  distance of the code is at least 
1 + w - t, which is usually the actual  distance in the known construct ions for these 

designs. We will usually call our  codewords  as blocks, but  somet imes  they will be 
denoted by m-tuples. 

In the code which is related to H(m,  q, w, t) we want  that  the m i n i m u m  H a m m i n g  
distance will be large as possible. Since in each t coordinates  we must  have all q' 
possibilities of a lphabet  letters, it follows that  for q > 1 there are two codewords  for 

which the first t coordinates  are nonzeros,  and they differ in exactly one coordinate  in 
these t coordinates.  The  m i n i m u m  H a m m i n g  distance between these two codewords  is 

at mos t  1 + 2(w - t). An H{rn, q, w, t) which forms a code with min imum H a m m i n g  

distance at least 1 + 2(w - t) will be called a generalized Steiner system GS(t,  w, m, q). 

Note,  that  this is a general izat ion of a Steiner system, since in a Steiner system the 
m i n imum H a m m i n g  distance is 2 + 2 ( w -  t). Of  course, H ( m , q , w , t )  might  have 
any distance between 1 + w - t and 1 + 2(w - t). An H(m,  q, w, t) with min imum 
H a m m i n g  distance d will be denoted by GSa(t, w, m, q). 

What  are the necessary condit ions for the existence of GSd(t, w, n, k)? Note ,  that  if 

Q is a GSa( t ,w ,n , k )  then the set of blocks { { X 1 , X  2 . . . . .  x ~ _ i } : { [ 0 , 1 ] , [ 1 , 1 ]  . . . . .  
[i - 1, 1],XI,X2, . . . , Xw - i } G Q} forms  a G S d( t - i, w - i, n - i, k ); for i = 1 this system 
is called the derived system. Now,  in a GSd(t -- i, w -- i, n -- i, k) each block covers 

w - i  n - i  t - i  (, i ) subsets of size t - i. We have to cover  a total  of (,_ ~)k subsets of size t - i. 
Hence,  the first necessary condi t ion for the existence of GSe(t, w, n, k) is that  for each 

w - i  n i t i,0 ~< i ~< t - 1, ( , - i )  divides ( , - i ) k  i 

H-designs were studied in a few contexts. H a r t m a n  et al. [13] have studied 
H(n,  k, 4, 3) designs in the context  of covering triples by quadruples.  Or thogona l  a r ray  
were studied by many  authors,  and they are used in more  places in this paper.  They  
are also called M D S  codes and will be discussed in Section 8. Raghava rao  [20] gives 
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the known results related to designs and in 116] we can find the relevant results for 
codes. H(n, k, w, 2) were extensively studied; they are a special case of group divisible 
designs, and will be denoted by GDD(n, k, w,2). Hanani 1-12] has proved that the 
necessary conditions for the existence of H(n, k, 3, 2) are also sufficient. But, in almost 
all constructions for H(n, k, w, t) the designs are not generalized Steiner systems, i.e., 
they do not have the required minimum Hamming distance. In the sections which 
follow we will give constructions for generalized Steiner system. We will use Zk for the 
additive group modulo k consisting of the integers {0, 1, . . . ,k  - 1} and ZZk for the 
additive group modulo k consisting of the integers {1,2, . . . ,  k}. 

3. Trivial  general ized Steiner s y s t e m s  

In this section we will consider the cases which seems to be trivial for generalized 
Steiner systems. We consider generalized Steiner systems GS(t, w, n, k). 

The first trivial case is when t = w. A GS(t, t, n, k) is just a collection of all possible 
(7)t k blocks of size t over an alphabet with k + 1 letters. The code has minimum 
Hamming distance 2 if k = 1 and minimum Hamming distance 1 if k > 1. 

For  k = 1 the next trivial case is when w = n, where the design consists of one block 
which contains all the points. As said before, for k > 2, H(n, k, n, t) is equivalent to an 
orthogonal array OA(t,n,k). If we let the set of size k consists of the elements 
{1,2 . . . .  ,k} we obtain the code which form GSd(t,n,n,k), where d = 1 + n - t. But, 
although the constant weight codes which are obtained are optimal they are not 
generalized Steiner systems GS(t, n, n, k) since the minimum Hamming distance is 
1 + n - t rather than 1 + 2(n - t) as needed. 

For  k = 1 the last trivial case is when t = 1, where the GS(t, w, n, k) exists if w divides 
n, and it consists of n/w parallel blocks (a set of blocks are called parallel if the 
intersection between any two of them is empty and there union is all the set of points). 
For  k > 1 and t = 1 the situation is much more complicated. The necessary condition 
for the existence of a GS(1, w, n, k) is that w divides nk. Given k and w, we believe that 
there exists an no such that this condition is sufficient for any n ~> no. Let A(n, d, w) be 
the maximum size of a binary code with constant weight w and minimum Hamming 
distance d. It is easy to prove the following theorem. 

Theorem 1. Given k > 1 and w, if GS(1,w,n,k ) exists then n <~ wA(n,2w - 2,w) /k and 
n ~ > l + ( w - 1 ) k .  

Proof. Since the minimum Hamming distance of the constant weight code derived 
from GS(I, w, n, k) is 2w - 1, it follows that the supports of the code form a binary 
constant weight code of weight w and distance 2 w -  2, and hence the size of 
GS(1, w, n, k) is at most A(n, 2w - 2, w), and the number of nonzero entries in the code 
is at most wA(n, 2w - 2, w). Since each coordinate must have exactly one codeword 
which each of the k nonzero alphabet letters we must have n <~ wA(n, 2w - 2, w)/k. 
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Now, there are k codewords which share the first coordinate, each one having 
a different letter in the first coordinate, and other than the first coordinate they do not 
share any of the other w - 1 coordinates. Hence, we have n/> 1 + (w - 1)k. [] 

A related constructive result is the following theorem 

Theorem 2. A generalized Steiner system GS(1, w, n, k) exists if and only if there exists 

a binary constant weight code of length n, weight w, and minimum Hamming distance 

2w - 2 with M codewords, such that each coordinate has k = wM/n nonzeros entries. 

Proof. Given a generalized Steiner system GS(1, w, n, k) we form the binary constant 
weight code from the supports of the codewords of GS(1,w,n,k). Given a binary 
constant weight code of length n, weight w, and minimum Hamming distance 2w - 2 
with M codewords, such that each coordinate has k = wM/n nonzeros entries, we 
generate GS(1, w, n, k) by assigning the k nonzero alphabet letters arbitrarily to the 
k nonzero entries in each coordinate, in a way that each coordinate will have each one 
of the k nonzero alphabet letters. []  

This theorem has two simple corollaries. The first corollary involves cyclic constant 
weight codes. We can use the fact that in a cyclic code all coordinates have the same 
number of ones. 

Corollary 1. Given a cyclic code of length n, with constant weight w, minimum Hamming 
distance 2w - 2, and M codewords, then there exists a GS(1, w, n, k), where k = wM/n. 

Corollary 2. Ira Steiner system S(2, w, n) exists then there exists a generalized Steiner 
system GS(1, w, n, k), where k = (n - 1)/(w - 1). 

For  the known Steiner systems S(2, w, n) the reader is referred to [2] (we will also 
mention them in Sections 4 and 6). Now, we will give a few constructions for 
generalized Steiner systems GS(1, w, n, k) (there are many more, but we choose only 
a few important ones). First, we give a few simple results. The first theorem needs no 
proof. 

Theorem3. I f  a GS(1,w, n l ,k )  and a GS(1,w, nE,k) exist, then there exists 
a GS(1,w, nl + n2,k). 

Next, we use the dual design (exchanging blocks and points) to obtain the following 
theorem. 

Theorem 4. A generalized Steiner system GS(1, w, n, k) exists if and only if a generalized 
Steiner stystem GS(1, k, nk/w, w) exists. 
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I f w  = 2 then A(n,2,2) = (g) and by Theorem 1 we must  have k ~< n - 1. We will 

p rove  that  if k ~< n - 1 and nk is even then GS(1, 2, n, k) exists. If  n is even we take 

k disjoint 1-factors on K ,  and apply  Theo rem 2. If  n is odd we use near - l - fac tor iza t ion  

F = {Fo, F1 . . . .  , F,_ 1 } of K , ,  such that  in Fi, ve r t ex / i s  isolated and F,_ 1 = { {i, i + 1}: 
i even}. For  each even k we take the first k near - l - fac tors  of F and add the set 

{{i,i + 1}:i even i < k} from F , -1  and apply  Theo rem 2. 
If  w = 3 the solution becomes more  complicated.  If n -= 3(mod 6), by Theo rem 1 we 

have k ~< (n - 1)/2, and we can use k parallel classes of a resolvable Steiner triple 

system [2] of  order  n and apply  Theo rem 2 on this system. Fo r  other  values of  n we 
can use Corol la ry  1 on cyclic constant  weight codes of weight 3. Fo r  informat ion on 

these codes the reader  is referred to [3, 8, 5, 15, 18]. Fo r  other  weights we will also try 

to use cyclic constant  weight codes, resolvable Steiner systems, and appropr ia te  
constant  weight codes, and to apply  Theo rem 2 and Corollar ies  1 and 2. F o r  
informat ion on these codes the reader  is referred to [1, 3, 6, 5, 9, 8, 14, 24]. 

For  an arrayA, let Ai.~ denote  the value of A in row i, co lumnj .  An m x n a r ray  A is 

called an array of  differences if all the elements are f rom Zq, and for any 

1 ~<il ~<i2~<m and 1 ~<jl < j 2 ~ < n ,  we have A ~ L i z - A a , j l ~ A i E , j 2 -  
Ai2.j~ (mod q). Given an m x n a r ray  of differences A we form the following system on 
Z ,  x Zq over  Z,,  + ~: Fo r  each row (a~, 1, ai, 2 . . . .  , ai,,) of  A and j ~ Zq we form the block 

{[(0 , j  + ai,1),i],[(1,j + ai,2),i] . . . .  , [ (n  - 1,j  + ai,,),i]} 

It is easily verified that  by this construct ion we form a GS(1, n, nq, m). 
The question of construct ing a r ray  of differences is interesting for itself. It is 

related to the question of construct ing ano ther  combintor ia l  structure, a difference 

array.  An n x m ar ray  A is called a difference array if all the elements are f rom Z , ,  

and for any  1 ~<il < i 2 ~ < n  and 1 ~<jl < j 2 ~ < m ,  we have AiL jE-A i l , j~  
A~2,j2 -Ai2 , j l (modn) .  It  is easy to verify in a similar way to the construct ions of 
[3] that  an n x m difference a r ray  exists if and only if an m x n a r ray  of differences with 

elements from Z ,  exists. Const ruct ions  for difference ar rays  are given in [-5, 3, 9]. 
As a conclusion from all the discussion in this section we infer that  m a n y  cases of  

GS(t, w, n, k) which seem to be trivial to construct,  f rom their written parameters ,  are 

not  at all trivial to construct.  

4. Generalized Steiner triple systems 

In a Steiner triple system each pair  is covered exactly by one triple, or  in other  
words,  each word  with H a m m i n g  weight 2 is covered by exactly one codeword  of 
weight 3. The  same can be said on word  of weight 3 in the H a m m i n g  code over  GF(q). 
Let n = (q" - 1)/(q - 1). Since the H a m m i n g  code of length n over  GF(q) is perfect 
and includes the zero codeword,  it follows that  each word  of length n and H a m m i n g  
weight 2, over  GF(q), is covered by exactly one codeword  of weight 3 in the H a m m i n g  
code. This is of  course a generalized Steiner triple system GS(2, 3, n , q -  1). In this 
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section we will give various constructions for generalized Steiner triple systems 
GS(2, 3,n,k).  We start with a complete solution for alphabet with four letters, i.e., 
k = 3, since this is the most simple case. We continue with some general solutions for 
all alphabets, and then we will finish with the complicated complete solution for 
alphabet with three letters, i.e., k = 2. The proofs for most of the constructions are 
similar in some sense to traditional proofs in design theory and hence they will be 
omitted. From the necessary condition of Section 2 and the simple observation that 
n > k, we infer the following theorem which is also derived for GDD(n,k,  3,2) by 
Hanani [12]. 

Theorem 5. A necessary condition fi)r the existence o f  GS(2, 3, n, k) is that 

1. I f k  = 0(rood6) then n > k. 

2. I f  k - 3(mod 6) then n =- 1 (mod 2) and n > k. 

3. I f  k = 2 or 4 (mod6)  then n = O  or l(mod3) a n d n > k .  
4. I f  k = 1 or 5(rood6) then n = 1 or 3(rood6) and n > k. 

Construction A. If n -- 1 or 5(mod 6), n/> 5, for each ~ e ZZ3  and each r, s, t s Z,  such 
that 2r --- s + t(mod n) we form the block 

{[-r,~],[s,~ + 1],[t,~ + 1]}. 

Theorem 6. Construction A forms a generalized Steiner triple system GS(2, 3, n, 3). 

Proof. Obviously, the equation 2r - s + t(mod n) has a unique solution for any pair 
{r, s}, {r, t}, {s, t} such that r, s, t e Z,.  Hence, each pair is covered by exactly one triple 
and we only have to prove that the corresponding code has minimum distance 3. Two 
codewords which share two coordinates have minimum distance 3 since each pair is 
covered by exactly one triple. Two codewords which share the same three coordinates 
can have distance 2 only if there is a solution to the equations 2r - s + t(mod n) and 
2s = r + t(mod n). A solution implies that 3r = 3s(mod n) which is impossible in our 
case since n = 1 or 5(mod6). [] 

Construction B. Given a GS(2, 3, m, 3) Q on Zm we construct the following blocks to 
produce a triple system on Z,, × Z3: For each block { [i, ~], [ j, fl], [r, 7] } 6 Q and each 
a ~ Z3 we form the block 

{ [(i, a), ~], [(J, a), fl], E(r, a), 7] }. 

For each i , j , r  ~ Z, ,  such that i + j  + r ~ 0(modm) and each ~ E Z Z 3  we form the 
blocks 

{ [(i, 0), ~], [(j, 1), a], E(r, 2), a + 1] }, 

{[(i,0),~],[(j, 1),~ + 1],[(r + 1,2),~]}, 

{ [(i,0),a + 13, [(j, 1),~],E(r + 2,2),a]}. 
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Theorem 7. Construction B forms a generalized Steiner triple system GS(2, 3, n, 3). 

Theorems 5-7, and the generalized Steiner triple system GS(2, 3, 9, 3) given in the 
appendix implies 

Theorem 8. Generalized Steiner triple system GS(2, 3, n, 3) exists if and only if n is ood 
and greater than 3. 

Next, we present three general constructions for every alphabet. 

Construction C. Assume Q is an GDD(m, k, 3, 2) on Zm, and R is an GS(2, 3, n, k) on Z,. 

We form the following triple system on Zm X Z,: For each block { [a,a],[b, fl], 
[c, 7] } s R and each i ~ Zm we form the block 

{ [(i, a), a], [(i, b), fl], [(i, c), y] }. 

For Q, we partition the blocks of the form {[i, ct],[j, fl],[h,7]} into t sets 
So, SI . . . . .  St- 1 such that t ~< n and the minimum distance in St, r ~ Zt is 3. For each 
block of Q, { [i, a], [j ,  fl], [h, 7] } e Sr and each a, b e Z,  we form the block 

{[(i,a),ct],[(j,b),fl], [(h,a + b + r),7] }. 

Construction D. Assume Q is an GDD(m, k, 3, 2) on Zm, and R is an GS(2, 3, n, k) on 
ZnU (A}. We form the following triple system on Zm x Z,  u (A}. 

For each block { [a, a], [b, fl], [c, 7] } ~ R and each i ~ Zm we form the block 

{ [(i, a), a], [(i, b), fl], [(i, c), y] }. 

For each block { [a, a], [b, fl], [A, 7] } E R and each i~ Z~ we form the block 

{ E(i, a), ~], [(i, b), fl], EA, 7] }. 

For Q, we partition the blocks of the form {[i,a],[j,  fl],[h,7]) into t sets 
So, $1 ....  , St- 1 such that t ~< n and the minimum distance in St, r ~ Zt is 3. For each 
block of Q, { [i, ~], [j ,  fl], [h, ~] } e S, and each a, b ~ Z,  we form the block 

{[(i,a),a],[(j ,b),fl],[(h,a + b + r),7] }. 

In Constructions C and D, we need to use a partition of GDD(m, k, 3, 2) into codes 
with minimum Hamming distance 3. Since there cannot be more than k 2 codewords 
which share the same pair of coordinates we know that the maximum number of sets 
in the partition is k 2. In the sequel, we will need such partitions for GDD(3, 2, 3, 2) 
and GDD(6,2,3,2). In GDD(3,2,3,2) we have 4 blocks, {[0,1],[1,1],[2,1]}, 
{ [0, 2], [1, 2], [2, 1] }, { [0, 2], [1, I], [2, 2] }, and { [0, 1], [1, 2], [2, 2] }. The partition 
include 4 sets, each one has one block. In GDD(6,2,3,2) there are 20 blocks. It 
can be partitioned into two sets. The first set can have the following 17 blocks: 
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{[0, 2], [2, 2], [4, 2] }, { [1, 2], [2, 1], [3, 2] }, {[3, 2], [4, 1], [5,2] }, { [0, 1], El, 2], [5,2] }, 
{[0, 2], [3, 2], [5, 1] }, {[1,2], [3, 1], [4,2] }, { [1, 1], [2, 2], [5,2] }, { [0,2], [1, 2], [4, 1] }, 
{ [0, 1], [2, 23, [3, 23 }, { [2, 1], [4, 2], [5, 2] }, { [0, 1], [4, 2], [5, 1] }, { [0, 2], [ l, 1], [2, 1] }, 
{ [2, 2], [3, 1], [4, 13 }, { [0, 1], [1, 1], [3, 1] }, { [0, 1], [2, 1], [4, 1] }, { [1, 1], [4, 13, [5, 1] }, 
and {[2, 1],[3, 1],[5, 1]}. The second set has the following 3 blocks: {[1,2] , [2 ,2] ,  
[5, 1] }, { [1, 1], [3, 2], [4, 2] }, and { [0, 2], [3, 1], [5, 2] }. 

Construction E. Assume Q is an S(2, v, n) on Z. and R is an GS(2, 3, v, k) on Zv. We 
form the following triple system: For  each {Xo,Xl,... ,xv-1} • Q such that xi < xi+l 
and each {[i,~],[j,~q,[r,T] } • R we form the block 

{ Ex,, ~], [x j,/~], Ex,, ~,1 }. 

Theorem 9. Constructions C, D and E form a generalized Steiner triple system 
GS(2, 3, n, k). 

As said before, the codewords of an Hamming  code of length n over GF(q), 
q a prime power, is perfect, include the zero codewords,  and hence the codewords of 
weight 3 form a generalized Steiner triple system GS(2, 3, n, q - 1). The Hamming  
codes exist for each n = (qm _ 1)/(q - 1). Actually, we only need the first value of n, 
i.e., n = (q2 _ 1)/(q - 1) = q + 1 since (q" - 1)/(q - 1) = ((qm-1 _ 1)/(q - 1))q + 1 
and Construct ion D can be applied to obtain the generalized Steiner triple systems 
with the other parameters.  Also, the recursion can be applied starting with 
GS(2, 3, q + 1, q - 1) and applying constructions C and D to obtain other generalized 
Steiner triple systems. We also know that the necessary condition for the existence of 
GDD(m, k, 3, 2) is also sufficient. Hence, when we have a suitable partition, as required 
by Constructions C and D, we will obtain more parameters on which Constructions 
C and D can be applied. As for Construct ion E, we know that for k/> 4 it can be 
applied with S(2, v, n), v/> 6. It is well known [2] that S(2, 6, n) exists for n - 1 or 
6(mod 15), n :~ 16,21, 36 with possible exceptions listed in p. 642 of [2]. For  v >/7, 
S(2, v,n) exists for n -  l ( m o d v -  1 ) , n ( n -  1 ) =  0 ( m o d v ( v -  1)) and n sufficiently 
large. 

Now, we turn to the interesting case of an alphabet with three letters. It was easily 
observed that GS(2, 3, 6, 2) cannot  exists, but apart  from this we will show that the 
necessary condition is also sufficient, i.e., GS(2, 3, n, 2) exists for all n = 0 or l (mod 3), 
n >~ 4, and n ~: 6. First, we need two more constructions. 

Construction F. If n ---- 1 or 5(mod6), n ~> 5, we form the following triple system on 
Z,  x Z3: For  each r, s, t • Z ,  such that 2r ---=- s + t (mod n) and each i • Z3 we form the 
block 

{ E(r, i), 2], [(s, i), 12, [(t, i), 1] }. 
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For  each r, s e Z .  we 

{ [(r, 0), 1], [(s, 1), 

{ [(r, 0), 1], [(s, 1), 

{ [(r,O), 2], [(s, 1), 

form the blocks 

1],[(r - s + 1,2),23}, 

2], [(r - s + 2,2), 1]}, 

13, [ ( r -  s + 3,2), 1]}. 

Let F = {Fo ,F1 , . . . ,F ,  1} be a near-one-factorization of K,  on the vertices Z, ,  
such that  in Fj vertex j is isolated. For  each i e Z3, j ~ Z ,  and {r, s} E Fj we form the 
block 

{[(j,i),Z],[(r,i + 1),2], [(s,i + 1),2]}. 

For  each j e Z ,  we form the block 

{ [(j,0), 2], [(j ,  1), 2], [(j ,  2), 2] }. 

For  Construction G which follows we need a 9ood 1-factorization as defined by 
Rosa [21]. A set of k edge-disjoint 1-factors of the complete graph Kz, is said to form 
a k-9ood set of 1-factors if their union is a bipartite graph. Obviously, any two 
edge-disjoint 1-factors of Kzn form a 2-good set. A 1-factorization of Kz. is said to be 
9ood 1-factorization of Kzn if it contains a 3-good set of 1-factors. Rosa [21] proved 
that  a good 1-factorization of Kzn exists if and only if n >/4. 

Construction G. Assume Q is a GS(2,3,n,2) on Z. ,  n = 1 or 3(mod6). We construct 
a triple system on Z .  × {0} w Z .  +1 x { 1 }: For  each block { I-a, ~], [b, fl], [c, 7] } ~ O we 
form the block 

{ E(a, 0), ~3, [(b, 0), fl], [(c, 0), ~,3 }. 

Let F = {Fo, F1, Fz . . . . .  /7,_ 1 } be a good-l-factorization of K,+ 1, where {Fo, F1, F2 } 
forms a 3-good set. 

For  each pair of 1-factors {Fa,Fb}, where either a ~> 3 is odd and b = a + 1, or 
(a, b) ~ {(0, 1), (2, 3), (0, 2), (1, 4), (1, 2), (0, 3)}, we order the elements of Z ,  in cyclic se- 
quences So, sl . . . . .  s,_ 1 such that {s,., s,, + 1 } (subscripts taken modulo  r) is contained in 
F, if m is even and in Fb if m is odd. Furthermore,  let A and B be the two sides of the 
bipartite graph formed from the union of the edges of Fo, F1, and F2. We require that  
s,. is a vertex in A and hence s,, + 1 is a vertex in B if {a, b} c {0, 1, 2}. 

For  each odd a~Z,-1,  a ~> 5, and each two pairs {Sm, S,,+l} and {Sm+l,Sm+2}, 
m even, from a cyclic sequence related to the pair of 1-factors {F,, Fa+l} we form the 
following blocks: 

{ [(a, 0), 1], [(Sm, 1), 1], [(S.,+ 1,1), 1]}, 

{ E(a,0), 1], E(sm+ 1,1), 2], [(s,.+:, 1), 2] }, 

{ f(a, 0), 23, E(sm, 1), 23, [(s,..1,1), 23 }, 

{ [(a,O), 2], [(s,. + 1,1), 1], [(s,.+ 2, 1), 1]}, 
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{E(a + 1,0), 1], [(Sm, 1), 1], [(Sm+ t, 1),2]}, 

{[(a + 1,0), 1],[(sm+l, 1), 1], [(sm+2, 1),2] }, 

{[(a + 1,O),2],[(Sm,1),2],[(Sm+l,1),l]},  

{[(a + 1,0), 2], [(s,,+ 1,1),23, [(sm+2, 1), 13}. 

For  each two pairs {sin,s,.+1} and {s,.+l,s,,+2 }, rn even, from a cyclic sequence 
related to the pair of l-factors {F3,F4} we form the following blocks. 

[ [(4, 0), 13, [(s,., 1), 13, [(s,. +t, 1), 23 }, 

{ [(4,0), 12, [(sin+ 1, 1), 12, [(s,.+ 2, 1), 2] }, 

{ [(4, 0), 2], [(Sm, 1), 2], [(S,. +1, 1), 1] }, 

{ [(4, 0), 2], [(s,.+ ~, 1), 2], [(s,.+ 2, 1), 1]). 

For  each two pairs {s,.,s.,+l } and {s,.+l,s, .+z}, m even, from a cyclic sequence 
related to the pair of 1-factors {Fo, F1 } we form the following blocks: 

{ [(0, 0), 13, [(sm, 1), 1], [(s,. +1, 1), 23 }, 

{ [(0, 0), 1], [(s., +1,1), 1], [(s., +2, 1), 2] }. 

For  each two pairs {s,.,s,.+l } and {Sm+x,Sm+2 }, m even, from a cyclic sequence 
related to the pair of 1-factors {Fz, F3} we form the following blocks: 

{ [(0, 0), 2], [(s,., 1), 13, [(s,. +x, 1), 1] }, 

{ [(0,0), 23, [(sm+ 1, 1),2], [(s.,+ z, 1),2] }. 

For  each two pairs {s,., Sin+ 1} and {s.,+ 1,s,.+z }, m even, from a cyclic sequence 
related to the pair of 1-factors {Fo, F2) we form the following blocks: 

{ [(1, 0), 1], [(s~, 1), 2], [(s.. +1,1), 1] }, 

{ [(1, 0), 1], E(s,.+ 1, 1), 23, [(s,.+ 2,1), 1]}. 

For each two pairs {s,.,sm+l } and {s,.+ 1,s,.+2), m even, from a cyclic sequence 
related to the pair of 1-factors {F1, F4} we form the following blocks: 

{ [(1,0), 2], [(s,., 1), 1], [(s, . .  1, 1), 1] }, 

{ [(1,0), 2], [(s,.+ 1,1), 2], [(s,.+ 2, 1), 2] }. 

For each two pairs {s.,,sm+l} and {s.+l ,s , .+2},  m even, from a cyclic sequence 
related to the pair of 1-factors {F1, Fz} we form the following blocks: 

{ [(2,0), 1], [(s,., 1), 1], [(s,.+ 1,1), 2] }, 

{ [(2, 0), 1], [(s,. + 1,1), 1], [(s,. + :, 1), 23 }. 
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For each two pairs {sin, sat+ 1} and {sat+ 1, sat + 2 }, m even, from a cyclic sequence 
related to the pair of 1-factors {F0, F3 } we form the following blocks: 

{ [(2, 0), 2], [(sat, 1), 2], [(s,.+ ~, 1), 2] }, 

{ [(2, 0), 2], [(sat +1,1), 1], [(sat + 2, 1), 1] }. 

For each two pairs {sat, sat+ 1} and {sat+ 1, sat+ 2 }, m even, from a cyclic sequence 
related to the pair of 1-factors {F0, F2 } we form the following blocks: 

{ [(3, 0), 12, [(sat, 1), 13, [(sat +1,1), 12 }, 

{ [(3, 0), 13, [(sat + 1,1), 23, [(sat+ z, 1), 22 }. 

For each two pairs {sat, sat+ 1} and {sat+ 1, sat+ 2 }, m even, from a cyclic sequence 
related to the pair of 1-factors {F1, F4} we form the following blocks: 

{ [(3, 0), 23, [(sat, 1), 23, [(sat+ 1,1), 23 }, 

{ [(3, 0), 23, [(sat +1,1), 13, [(sat. 2, 1), 12 }. 

Theorem 10. Constructions F and G form oeneralized Steiner triple systems. 

Theorem 11. GS(2,3,n,2) exists if and only ifn =- 0 or l (mod 3), n ~> 4, n # 6. 

Proof. By Theorem 5 and since no GS(2, 3, 6, 2) exists, we only have to show that for 
each n = 0 or 1 (mod 3), n >1 4, n # 6 there exists a GS(2, 3, n, 2). The proof is by 
induction on n. The basis is the generalized triple systems for orders 4, 7, 9, and 10, 
given in the appendix. Assume, we have a solution for all admissible orders less than 
n, n > 10. Now, we want to show that there is a solution of order n. We distinguish 
between the following cases: 

Case 1: n = l(mod 12). It is known that there exists an S(2,4,n) and the system is 
obtained by Construction E. 

Case 2: n = 7(mod 12), i.e., n = 2m + 1, m = 3(mod 6). By the induction hypothesis 
we have GS(2, 3, m, 2) and the result is obtained by Construction G. 

Case 3 : n - 4  or 10(modl8), i.e., n = 3 m + l ,  m = l  or 3(mod6). By using 
GS(2, 3, m, 2), GS(2, 3, 4, 2), and Construction D, we obtain the required system. 

Case 4: n = 16(mod 18), i.e., n = 3m + 1, m = 5(mod6). By using GDD(3,2,3,2), 
GS(2, 3, m + 1, 2), and Construction D, we obtain the required system. 

Case5: n=O or 12(mod18), i.e., n=3m,  m=O or 4(mod6). By using 
GDD(3, 2, 3, 2), GS(2, 3, m, 2), and Construction C we obtain the required system. 

Case6: n = 6 ( m o d l 8 ) ,  i.e., n=6m,  m = l ( m o d 3 ) .  By using GDD(6,2,3,2), 
GS(2, 3, m, 2), and Construction C we obtain the required system. 

Case 7: n = 3 ( m o d 6 ) ,  n = 3 m ,  where m is odd; if m---1 or 3(mod6) then 
GS(2, 3, n, 2) is obtained via Construction C, and ifm = 1 or 5(mod 6) then the system 
is obtained via Construction F. 
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Cases 1 and 2 implies the solution for 1 (mod 6); Cases 3 and 4 implies the solution 
for 4(mod 6); Cases 5 and 6 implies the solution for 0(mod 6) and Case 7 implies the 
solution for 3(mod6). Thus, for each n - 0 or l(mod3), n 1> 4, n # 6, there exists 
a GS(2,3,n,2). [] 

5. Generalized Steiner quadruples systems 

Generalized Steiner quadruple systems seems to be much more difficult to obtain. 
The knowledge on the existence of H(n, 2, 4, 3) designs [13] does not seem to help. We 
will discuss only generalized Steiner quadruple systems over an alphabet with 3 let- 
ters. First, we will give two recursive constructions to generate generalized Steiner 
quadruple system over an alphabet with 3 letters. Then we will give some ideas how to 
construct other systems and we will apply some of these ideas. 

Construction H. Assume Q is a GS(3,4,2n,2) on Z2., F = {Fo,FI,. . . ,F2,-2} is 
a good 1-factorization of K2., where {Fo, F1, F2 } forms a 3-good set. Let A and B be 
the two sides of the bipartite graph formed from the union of the edges of Fo, F1, and 
F2. For each pair of 1-factors {Fa,Fa+l}, where a >~ 3, aeZ2 . -1 ,  we order the 
elements of Z.  in cyclic sequences So, sl, ..., st- 1 such that {sin, Sm+ 1 } (subscripts taken 
modulo r) is contained in Fa if m is even and in Fb if m is odd. We form the following 
system on Z2n x Z2: For each block { [i, or], [ j, fl], [r, y], [m, 6] } • Q we form the 
blocks 

{ [(i, 0), ~], [(j ,  0), fl], [(r, 0), 7], [m, 0), 6] }, 

{ [(i, 1), ~], [(j,  1), fl], [(r, 1), 7], [(m, 1), 6] }. 

For each pair {i,j} • Fa and each pair {r,m} • F~+3 we form the blocks 

{ [(i, 0), 1], [(j,0), 1], [(r, 1), 1], [(m, 1), 1] }, 

{ [(i, 0), 23, [(j,  0), 21, [(r, 1), 23, [(m, l), 2] }. 

For each pair {i,j} • Fa and each pair {r,m} • F.+4 we form the blocks 

{ [(i,0), 1], [(j,  0), 1"1, [(r, 1), 2], [(m, 1), 2] }, 

{ [(i, 0), 2], E(j, 0), 2], [(r, 1), 1], [(m, 1), 1] }. 

For each odd a,a>~3, and a • Z 2 . - 1 ,  and each four pairs {S,.,Sr.+I} and 
{Sm+l,Sr,+2}, m even, {sr, s,+x} and {s,+ l,s,+ 2}, r even, from the cyclic sequence 
related to the pair of 1-factors {Fa, F,+ a } we form the following blocks: 

{ [(s,., 0), 1], [(s,. + 1,0), 2], [(s., 1), 1], [(s,+ 1,1), 2] }, 

{ [(s,., 0), 1], [(s,. + 1,0), 2], [(st+ ,, 1), 1], [(s.+ 2, 1), 2] }, 
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{ [(Sin, 0), 2], [(S~ +~, 0), 1], [(Sr, 1), 2], [(S~ + 1,  1), 1] }, 

{ [(s,., 0), 2], [(s,, + ,, 0), 1], [(s,+ t, 1), 2], [(st + 2, 1), 1] }, 

{ [(s,,+,,0), 1], [(s,.+ 2,0),2], [(sr, 1), 1], [(st+ 1, 1),2] }, 

{ [(sin+ ~, 0), 1], [(s.. + 2,0), 2], [(st+ 1,1), 1], [(st+ 2,1), 2] }, 

{ [(s,, + ,, 0), 2], [(s,, + 2,0), 1], [(s,, 1), 2], [(st+ ~, 1), 1] }, 

{ [(s,, + ~,0), 2], [(s,,+ 2,0), 1], [(s~+ 1,1), 2], [(s~+ 2, 1), 1]}. 

For  each pair {i,j} • Fa, a • Z3, and each pair {r, m} • Fa, such that i, r e A,j,  m • B, 
we form the blocks 

{ [(i, 0), 1], [ ( j ,  0), 2], [(r, 1), 1], [(m, 1), 2] }, 

{ [(i, 0), 23, [(j ,  0), i] ,  [(r, 1), 23, [(m, 1), 1] }. 

For  each pair {i,j} ~ Fa, a • Z3, and each pair {r,m} • F,+I, such that i,r ~ A, 
j, m • B, we form the blocks 

{ [(i, 0), 13, E(J, 0), 2], E(r, 1), 23, [(m, 1), 13 }, 

{ [(i, 0), 2], [( j ,  0), 1], [(r, 1), 1], [(m, 1), 2] }. 

Construction I. Assume Q is a GS(3, 4, 2n, 2) on Z2,, and R is an H(m, 2, 4, 3) on Zm, 
with a part i t ioned into t sets So, Sx , ... , S,-1, such that t ~< 2n and the minimum 
distance in S,, r • Zt is 3. We form the following quadruple system on Z2, x Z,,: For  
each block of R, { [i, el,  [j ,/~], [h, 7], [P, 6] } e Sr and each a, b, c e Z2., we form the 
block 

{[(a,i),~],[(b,j),~],[(c,h),7],[(a + b + c + r,h),6]}. 

For  each a,b • Z,, we form on Z2, x {a,b} the same blocks of Z2. x {0, 1} as in 
construction H. Note, that the blocks of Q should be formed only once on each 
Z2. x {a}, a e Z,.. Also, it is easy to verify that H(m, 2,4, 3) can be always parti t ioned 
into at most  4 sets with min imum distance 3 in each set. 

Theorem 12. Constructions H and I form 9eneralized Steiner quadruple systems. 

We have no general direct construction for generalized Steiner quadruple systems. 
In fact, for n --- 1 or 5(mod 6) we did not find any generalized Steiner quadruple system 
GS(3,4, n, 2). But, we do have two general ideas for their construction when n - 2 or 
4(mod 6). 
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The first idea is very simple, but quite complicated for implementation. GS(3, 4, 8, 2) 
given in the appendix was formed by this method. Let n --- 2 or 4(mod 6), and we want 
to form a GS(3, 4, n, 2) on Z..  For each three distinct values a, b, c e Z.,  we will try to 
form the blocks { [a, 1], [b, 1], [c, 1], [d, 2] } and { [a, 2], [b, 2], [c, 2], [d, 1] }, for some 
d ~ Z , .  

The second idea is more complicated, but it is simpler for implementation. Let n - 2 
or 4(rood 6), and let F = {Fo,F1, ... ,F,-2} be a 1-factorization of K,  on the points of 
Z,,  such that for any union of two distinct 1-factors F~ and Fj there is no cycle of length 
4. Assume further that Q is a Steiner quadruple system S(3,4, n) on Z.,  such that for 
any 1-factor Fi, if {X1,Xz},{X3,X4} E Fi, then {X1,Xz,X3,X4}•Q. If such 1-factoriz- 
ation and Steiner quadruple system exist, then we form the following quadruple 
system. For each two pairs {xl, x2 }, {x3, x4 } ~ Fi, we form the blocks 

{ [xl,  1], [x2,1], [x3,2], [x4,2] }, 

{ [x, ,  2], Ix2,2], [x3, 1], [x4, 1] }. 

For each block {w, x, y, z} e Q we form the blocks 

{ [w, 1], [x, 1], [y, 1], [z, 1] }, 

{ [w, 2], Ix, 23, [y, 2-1, [z, 23 }. 

It is easy to verify that we have constructed a GS(3,4, n, 2) if the appropriate 
1-factorization and Steiner quadruple system exist. These 1-factorizations are 
known to exist, but to make this paper more self-contained we present two simple 
constructions. 

Let n - 2(mod6) and for 0 ~< i ~ n - 2 define 

F~ = {{x,y}: x + y - 2i(modn - 1 ) } w { { i , n -  1}}, 

For the second construction let m = l  or 5(mod6). Let Gi={{x ,y} :  
x + y - 2 i ( m o d m ) }  f o r 0 ~ < i ~ < m - l a n d l e t  

Fi = {{x,y}: {x, y} e Gi} vo{ {x + m, y + m}: {x, y} e Gi} to { {i,i + m}}. 

For 1 ~ < i ~ < m - l l e t  

F,,- 1+i = {{x,x  + m + i}: x e Z , , } ,  where x + m + i is reduced modulo m to the 
range {m,m + 1 , . . . , 2 m -  1}. 

Using the second construction for m = 5 and the unique Steiner quadruple system 
of order 10 we have obtained an GS(3,4, 10,2) given in the appendix. Note that the 
blocks for the GS(3, 4, n, 2), obtained from the 1-factorization of the first construction 
have the cycle (0, 1 . . . . .  n - 2)(n - 1) as an automorphism group, while the blocks for 
the GS(3, 4, n, 2), obtained from the 1-factorization of the second construction have the 
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cycle (0, 1 . . . .  ,r - 1)(r,r + 1 . . . .  ,n - 1), r = n/2 as an automorphism group. The best 
way to search for an appropriate Steiner quadruple system to complete the 
GS(3, 4, n, 2) is to take Steiner quadruple system with the same automorphism group. 
A good survey on automorphism groups of Steiner quadruple systems is given in [141. 

6. Generalized 2-designs 

In this section we discuss the existence of generalized Steiner systems which cover 
pairs, i.e., GS(2, w, n, k). The case ofw = 3 was discussed in Section 4. We will first give 
some general constructions and then discuss some specific cases. The first three 
constructions are generalizations of Constructions C, D, and E of Section 4. 

Construction J. Assume Q is an GS(2, w, m, k) on Z,., R is an GS(2, w, n, k) on Z.,  and 
S is OA(2,w,n) over Z,.  We form the following system on Z,. x Z.: For each block 
{ [al,  ~11, [a2, ~t21 . . . . .  [a~, ~w] } ~ R and each i~ Z,. we form the block 

{ [(i, al ), ctl 1, [(i, a2), ~2] . . . . .  [(i, aw), ¢tw] }. 

For each block { [il, ~11, [i2, ~21 . . . .  , [iw, ct~] } e Q and each (Jl , j2, . . .  ,jw) ~ S we 
form the block 

{[(il , j l) ,~1],  [(i2,j2), ~21 . . . . .  [(iw,jw), ~wl }. 

Construction K. Assume Q is an GS(2,w,m,k) on Z,., R is an GS(2,w,n,k) on 
Z.  w {A}, and S is OA(2, w, n) over Z~. We form the following system on Z,. x Z.  u {A}: 
For each block { In1, ~q ], [a2, ~2], ..., [aw, Ctw] } ~ R and each i e Z,. we form the block 

{ [(i, al ), ~11, [(i, a2), 0~2] . . . .  , [(i, aw), ~w] }. 

For each block { [al,  ~1 ] , . . . ,  law- 1, ~w- 1 ], [A, ~w] } ~ R and each i ~ Z,. we form 
the block 

{ [(i, al), cq] . . . . .  [(i ,a~-l) ,ot ,- l] ,[A,~tw]}.  

For each block { [il, ~11, [i2, ~21, .-., [iw, ~w] } ~ Q and each ( j l , j2 ,  ... ,J ,)  ~ S we 
form the block 

{ [-(il , j l  ), oq 1, [(i2, j2), ~2] . . . . .  [(iw,jw), ~ 1  }. 

Construction L. Assume Q is an S(2, v, n) on Z,  and R is an GS(2, w, v, k) on Zv. We 
form the following system on Z,: For each {Xo,Xl, ... ,xv-l} ~ Q such that xi < Xi+l 
and each { [il, aq 1, [i2, ct2] . . . . .  [iw, gw] } ~ R we form the block 

{ [x,,, ~ , ] ,  [x,,, ~ ]  .... , [x,., ~ ]  }. 

Theorem 13. Constructions J, K, and L result with generalized Steiner systems. 
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An extensive literature on the existence of Steiner systems S(2, v,n) is known 
[2]. S(2,4, n) exists if and only if n -  1 or 4(mod 12). S(2,5,n) exists if and only if 
n = 1 or 5(mod20). S(2,6,n) exists if and only if n = 1 or 6(mod 15), n ~ 16,21,36, 
and possible exceptions listed in [2]. S(2,v,n) exists for n = l ( m o d v - 1 ) ,  
n(n - 1) = 0(mod v(v - 1)), and n sufficiently large. To apply Constructions J, K, and 
L, we also need some specific generalized Steiner systems. We will consider the case 
w = 4 and k = 2. The codewords of weight 5 in the ternary Golay code of length 11, 
and minimum Hamming distance 5, form a generalized Steiner System GS(3, 5, 11, 2). 
The derived system from GS(3, 5, 11, 2) is a GS(2, 4, 10, 2). By the necessary condition 
given in Section 2 we have that a GS(2,4, n,2) can exist only if n = l(mod 3). We 
conjecture that for n = 1 (mod 3), n >/7 there exists a GS(2, 4, n, 2). However, except for 
these specific systems and the ones derived by Constructions J, K, and L, we do not 
have any other system. 

The minimum Hamming distance of the code derived from H(n, 2, 4, 2) is 3, while 
the one derived from GS(2, 4, n, 2) is 5. It is much more easier to obtain GS4(2, 4, n, 2) 
rather than GS(2, 4, n, 2). For  odd n a good set of  elements is a set which contains 
(n - 1)/2 nonzero residues modulo n (between 1 and n - 1), and for each two elements 
x , y  in the set n -  x ¢ y .  Assume n -  l (mod6) and let S = {{xl,Yi,Zi}: 1 <.i<~ 
(n -- 1)/6} be a set such that the union of the triples {xi, Yl, zi} is a good set of elements 
and also the union of the sets {Yl - xi, zl - Yi, z i -  xi} is also a good set of elements. 
Given a good set of element S(n), for each triple {x, y, z} ~ S(n) and each i e Z,  we form 
the following blocks to obtain a GS4(2,4, n, 2): 

[i, 1],[i + x,2], [i + y,2], [i + z,2] }, 

[i, 2], [i + x, 1],[i + y, 1],[i + z, 1]}. 

We conjecture that such a set S(n) exists for all n - 1 (mod 6). Let p - 1 (mod 6) be 
a prime, let ~ be a primitive root modulo p, and let fl be an element of order 3 modulo 
p. The set S(p) = {{ai, odfl, aifl2}: 1 <. i <~ (p - 1)/6} is a good set of elements. The 
proof is based on simple number theory arguments, e.g., the observation that 
fi2 + fl + 1 = 0. For n = 25 we found the following good set of elements, S(25) = 
{{10,23, 24}, {4, 20,22}, {8, 12, 18}, {6,9, 14} }. More codes with minimum Hamming 
distance 4 can be constructed via Constructions J, K, and L. 

7. Double designs 

As said in the introduction, the supports of the codewords of weight 5 in the ternary 
Golay code of length 11 form a Steiner system S(4, 5, 11). Also, since the Golay code 
is perfect with covering radius 2, the codewords of weight 5 form a generalized 
Steiner Systems GS(3, 5, 11, 2). The Hamming code of length q + 1 over GF(q) has a 
similar property. The codewords of weight 3 form a generalized Steiner system 
GS(2, 3, q + 1, q - 1), while their supports form the trivial Steiner system S(3, 3, q + 1). 
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A code for which its codewords form a generalized Steiner system GS(wl ,  w, n, k), each 

w coordinates which are support  of a codeword are support  of k codewords, and their 
supports form a Steiner system S(w2, w, n) will be called a double Steiner system (or just 

a double desion if we take H(n, k, w, wl )  rather than GS(Wl, w, n, k)). Are double Steiner 
systems exist except for the ones derived above? 

First, we ask what are the necessary conditions for the existence of double design? 

Assume C is a constant weight code over an alphabet with k + 1 letters, of length 

n and weight w. Assume further that the codewords of C form an H(n, k, w, wa), each 
support  is shared by k codewords, and the supports form a Steiner system S(w2, w, n). 

• n w I W Since the codewords of C form an H(n, k, w, Wl ), it follows that C contains (w,)k /(w,) 
codewords and because each support  is shared by k codewords, the number of 
supports is t "  ~k w, - 1 ~ , w . . . .  /(w,). Now, an S(w2,w,n)  have (w2)/(w2) blocks and therefore we 
must have t"  ~k" - 1 w . . . . .  /(w,) = (w2)/(w2). Solving this equation we have that 

(n - -  w l ) . - - ( n - -  w2 + 2)(n - w2 + 1) = kW ,_1 

( w -  w l ) . . . ( w -  w2 + 2 ) ( w -  w2 + 1) 

What  are the possible solutions to this equation? We distinguish between several 

c a s e s .  

Case 1: k = 1, the generalized H-design is a Steiner system and the equation does 

not have a meaning. 
For  the next four cases we assume k > 1. 

Case 2: wl = 1, the solution for the equation gives w = n, w 2 = W1, and the 
H-design is a trivial one. 

Case 3: Wl = 2, it is easy to verify that the equation might have many kinds of 

solutions. 
Case 4: Wl i> 3, the equation has solutions for w2 = wx + 1, which implies k w' - 1 = 

(n  - w l ) / w  - w ~ ) .  

Case 5: wl = 3, the equation has solutions for w2 = w~ + 2 and k = 2m, m odd. It 
takes the form k 2 --- ( n  - -  W l ) ( n  - -  w 1 - -  1 ) / ( w  - -  W l ) ( W  - -  w 1 - 1). N o w ,  letting 
m 2 = n - wl and (m + 1)/2 = w - wl, we obtain a solution. 

We conjecture that the equation has no other solutions except for the five cases 
mentioned above. These five cases give the first necessary condition for the existence 
of double Steiner system GS(wx, w,n,k) .  Since for k > 1 each support  share a few 
codewords, it follows that the weight w is an upper bound on the minimum distance of 

the generalized Steiner system and hence we must have w ~> 1 + 2 ( w -  w~), i.e., 
2w~ t> w + 1. This condition rules out many  cases which are possible by the first 
necessary condition. To these conditions we have to add the necessary conditions for 
the existence of the related Steiner system and generalized Steiner system. 

It is quite difficult to find more double Steiner systems, especially because of 
the second necessary condition 2wa ~> w + 1. Less difficult is to find systems 
GSw(w~, w, n, k) for which the supports form S(w2, w, n). All the systems we know have 
some linear properties. A linear constant weight code, of length n, over GF(k + 1) is 
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a constant  weight code C over GF(k + 1) with the property that  ( C l , C  2 . . . .  ,On) • C 

implies that  (cwl,c~c2, . . . ,  c~c,) • C for any nonzero element c~ • GF(k + 1). Obviously, 
the codewords of any weight in a linear code form a linear constant  weight code. 
A quasi linear constant weight code over ZZk is a constant  weight code C over ZZk 
with the property that (cl,c2 ... .  , c , ) • C  implies that  ( f ( ~ + c l ) , f ( ~ + c 2 )  .. . .  , 
f(c~ + c,)) • C, for any element c~ in ZZk, where f(c~ + c) = 0 if c = 0 and f(c~ + c) = 
c~ + c ifc ¢ 0. All double Steiner system we have found are either linear or quasi linear. 

From the following blocks we form a quasi linear GSg(2, 4, 8, 3) for which the 
supports form S(3, 4, 8). For  each i ~ ZZ3 we form the blocks 

{ [0, i], [1, i], [2, i], [3, iX } 

{[0, i] ,[1,  i + 23,[6, i + 23,[7, i + 2] 

{[0, i] ,[2,  i + 1],[5, i + 2],[7, i]} 

{[0, i], [3, i + 2],[5, i] ,[6,  i]} 

{[1, i + 2],[2, i] ,[4,  i + 1],[7, i + 1] 

{[1, i + 2],[3, i + 1],[5, i + 1],[7, i] 

{[2,i + 2],[3, i] ,[4,  i + 1],[5,i  + 2] 

{[0, i ] , [1 , i  + 1],[4, i + 1],[5, i + 1]}, 

{[0, i], [2, i + 2], [4, i + 2],[6, i + 1]}, 

{[0, i],[3, i + 1],[4, i] ,[7,  i + 1]}, 

{[4, i + 2],[5, i + 1],[6, i] ,[7,  i + 1]}, 

{[1,i + 2],[2, i + 1] , [5 , i ] , [6 ,  i + 1]}, 

{[1, i + 2],[3, i],[4, i],[6, i]}, 

{[2, i + 2],[3, i + 1],[6, i ] , [7 , i  + 2]}. 

From the following blocks we form a quasi linear GS4(2,4, 5,3) for which the 
supports form S(4, 4, 5). For  each i • ZZ3 we form the blocks 

{ [0, i], [1, i], [2, i], [3, i] } 

{[0 , i ] , [2 , i  + 1],[3,i  + 2] , [4, i  + 1]} 

{[1, i] ,[2,  i + 2],[3, i + 1], [4,i + 1]}. 

Finally, one can easily construct a quasilinear GS~,(1,w, wn, k) for which the 
supports form an S(1, w, wn). 

{[0, i ] , [1 ,  i + 13, [2, i + 2] , [4 ,  i] }, 

{[0, i3,[1,i + 23,[3, i + 13,[4,i + 23}, 

8. M D S  constant weight codes 

Assume we are given a constant  weight code of length n, and weight w over an 
alphabet with k + 1 letters, with (,~)k different codewords. If k = 1 then the minimum 
Hamming  distance of the code is 2. If k > 1 then the minimum Hamming  distance d of 
the code satisfies d ~ w since w is the maximum possible distance between two 
codewords which share the same coordinates. If d = w the code will be called MDS 
Constant  Weight  Code (MDS-CW code). An (n, w, k) MDS-CW code is a constant  
weight code of weight w, minimum distance d = w, over an alphabet with k + 1 letters, 
with (~)k codewords. I l k  = 1, MDS-CW code exists if and only i fn >~ 2 and w = 2. If 
k > 1 then the codewords of minimum weight d is an MDS code over GF(k + 1) form 
an MDS-CW code. Are there any more MDS-CW codes? MDS code is equivalent to 
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the combinatorial  design of orthogonal array [16]. W.l.o.g. we can assume that the 

allzero row belongs to the array. With this assumption, the nonzero rows with 

minimum weight define an MDS -C W code as we will prove in Theorm 17. First, we 

will give some known theorems on orthogonal arrays, which will be extended later to 
MDS-CW codes. 

Theorem 14. For an OA(t ,n ,q)  i f  t <<. q then 

n <~ q + t - 1  if q is even 

n <~ q + t -  2 i f  q is odd and t >~ 3. 

Theorem 15. For an OA(t ,n ,q)  if q <<. t then n <~ t + 1. 

There are three sets of parameters for trivial orthogonal arrays: OA(1, n,q), 

OA(n,n,q),  and OA(n - 1,n,q) for all q ~> 2 and n >~ 2. Linear MDS codes exist over 

any Galois field GF(q), q is a power of prime. The construction of the code is given in 

[16], while in the orthogonal array form it is given in 1-20]. OA(t ,q  + 1,q), with 
1 ~ < t ~ < q + l  exists for any power of a prime q. If q is even we also have 
0A(3,2 'n + 2,2 m) and OA(2 m - 1,2 m + 2,2"). Blanchard I-4] proved that for all t, 

OA(t, n, k) exists for all sufficiently large n. Finally, OA(2, n, k) is equivalent to a set of 

n - 2 pairwise orthogonal latin squares of order k. Now, we turn our discussion to 
bounds and constructions for MDS-CW codes and their connection with orthogonal 

arrays. 

Theorem 16. I f  an (n, w, k) M D S - C W  code exists then an (n - 1, w, k) M D S - C W  code 

exists. 

Proof. Let C be an (n, w, k) M DS -C W code. By taking all blocks which do not contain 

the last coordinate we obtain an (n - 1, w, k) MDS-CW code. []  

Theorem 17. The rows o f  weight w = n - t + 1 in an orthogonal array OA( t , n , k  + 1), 
which contains the all zero row, form an (n, w, k) M D S - C W  code. 

Proof. We only have to prove that any w = n - t + 1 coordinates are supports of 
exactly k codewords. Assume that the orthogonal array is on the set of points Zn. 
Given any set W of w coordinates, let x ~ W, then Z n \ W  u {x} contains t points, 
which must include all possible t-tuples by the orthogonal  array property. By taking 
the k words with t - 1 zeroes in Zn \  W and all the nonzero elements of the alphabet in 
x, we must have that the corresponding k rows have weight w or else we will see the 
all-zero t-tuple twice in some t coordinates. The minimum Hamming  distance d = w is 
also an immediate result from the orthogonal array property. [ ]  
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Trivial  M D S - C W  codes are derived similarly to (or from) trivial o r thogona l  arrays.  
Fo r  w = 1 all possible words  of weight 1 and length n over  an a lphabe t  of size k + 1 

form an (n, 1,k) M D S - C W  code. Fo r  w = 2 the set {{ [ i ,~ ] , [ j , ~ ]} :  i,j ~ Z , ,a  ~ ZZk} 
forms an (n,2, k) M D S - C W  code. Fo r  w -  n the set {{[0 ,a] , [1 ,c t ]  . . . .  , [ n -  1,ct]}: 

E ZZk} forms an (n,n,k) M D S - C W  code. No te  that  M D S  codes of length q + 1, 
and m i n i m u m  distance 3, over  GF(q) are the same as the H a m m i n g  codes of  the 

same length and  distance, and hence the (q + 1,3,q - 1) M D S - C W  codes are the 
GS(2, 3, q + 1, q - 1) of Section 3. Since we are interested only in the rows of m i n i m u m  

weight we are able to find some more  M D S - C W  codes. 

Theorem 18. I f  an (n, w,k) MDS-CW code exists then an (n, w, rk) MDS-CW codes 
exists for all r > O. 

Proof.  Let  C be an (n, w, k) M D S - C W  code o v e r  Zk+ 1" We form a code C1 over  ZZk × 
ZZrw{(O,O)} as follows. Fo r  each codeword  {[il,~l],[i2,c~2],...,[iw,~w]} e C we 
construct  for C1 the codewords  {[il,(~1,j)],[i2,(ct2,j)] . . . .  ,[iw,(~tw,j)]} for all 
j 6 ZZ~. [] 

Theorem 19. I f  an (n, w, kl) MDS-CW code and an (n, w, k2) MDS-CW code exist then 
an (n, w, kl + k2) MDS-CW code exists. 

Proof.  Assume that  Ci is an (n,w, ki) M D S - C W  code over  Qi, i =  1,2, such that  
Qlc~Q2 = {0}. One  can easily verify that  ClwC2 is an (n,w, kl + k2) M D S - C W  
code. [ ]  

F r o m  an OA(2, n, k) we can obtain  an (n, n - 1, k - 1) M D S - C W  code. Now,  we will 

show ano ther  type of M D S - C W  code obta ined  f rom OA(2,n,k). Assume M is an 
OA(2, n, k) code over  ZZk such that  the first k symbols  in the first co lumn are ones, the 
next k symbols  in the first co lumn are twos, and so on. We delete the first column; in 

the new ar ray  we replace the first symbol  in the first k rows with zeroes, the second 
symbol  in the next k rows with zeroes and so on. All the rows after the first (n - 1)k 
rows are deleted (note that  in OA (2, n, k) we have n ~< k + 1 and hence we have at  least 

(n - 1)k rows). The  constructed a r ray  is an (n - 1, n - 2, k) M D S - C W  code. Hence  we 
have 

Theorem 20. I f  there exists an OA(2, n,k), then there exists an (n - 1 ,n  - 2 , k )  

MDS-CW code. 

The M D S - C W  codes which can be obta ined by Theorem 20 cannot  be always 
extended into o r thogona l  arrays.  Fo r  example,  f rom an OA(2, 6, 5) we obta in  (5,4, 5) 
M D S - C W  code, which if can be extended would result in an OA(2, 5, 6). But, it is well 
known [23] that  there is no pair  of o r thogona l  latin squares of order  6, and hence 
there is no OA(2,4, 6) and of course no OA(2, 5, 6). F r o m  an OA(2,q + 1,q), where q is 
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a power of  a prime, we obtain a (q, q - 1, q) M D S - C W  code, which if can be extended 

would result in an OA(2 ,q ,q  + 1). If  q + 1 is not  a power of a prime no such 

or thogonal  array is known. Combina t ions  of these arrays, other  known M D S - C W  

codes obtained from or thogona l  arrays, and Theorems 18 and 19 would result in 

other  M D S - C W  codes which cannot  be obtained from known or thogona l  arrays. 

Next, we want  to derive bounds  on the size of the alphabet,  k + 1, of an (n, w, k) 

M D S - C W  code for 3 ~< w ~< n - 1. If  w ~< n - 1, we know that each support  of  size 

w has k codewords.  These codewords  have distinct nonzero  letters in each coordinate  

and in each coordinate  each one of  the nonzero  k symbols appears. A codeword  which 

shares exactly w - 1 coordinates  with these codewords  cannot  have more  than one 

c o m m o n  symbol with each of these k codewords  (otherwise the distance will be less 

than w). Therefore, we must  have k ~> w - 1. If w ~> 3 we consider the codewords  with 

nonzero  symbols in the first w -  1 coordinates  and the same symbol in the first 

coordinate.  These codewords  cannot  have more  c o m m o n  symbols (except for the one 

in the first coordinate). Therefore, we must  have n ~< w - 1 + k. Combining  these 

results, we have the following theorem which can be compared  to Theorems 14 

and 15. 

Theorem 21. Let  C be an (n ,w ,k )  M D S - C W  code. I f  w >~ 3 then k >>. n -  w + 1. 

I f  w <~ n -  1 then k >>. w - 1. 

Theorem22. I f  an (n,w,w-1) M D S - C W  code exists  then there exists  an 

OA(2, w + 1, w). 

Proof. Consider  all codewords  with nonzero  entries only in the first w + 1 columns. 

These codewords  form an (w + 1, w, w - 1) M D S - C W  code. If we add the zero word 

to this code we obtain a code of  length w + 1 over an alphabet  with w letter, with 
(w - 1)(w + 1) + 1 = w 2 codewords,  and min imum distance w. Hence, this code is an 

OA(2, w + 1,w) and the theorem follows. [ ]  

Note  that  by the known parameters  of or thogonal  arrays, Theorems 17 and 22, we 

have that OA(2 ,w  + 1,w) exists if and only if(w + 1 ,w,w - 1) M D S - C W  code exists. 

Finally, a very simple result is the following theorem. 

Theorem 23. For each n and w there exists  a ko such that for  each k >1 ko there exists  an 

(n ,w,k )  M O S - C W  code. 

Proof. Let m be the smallest integer such that  2 m >~ n - 1. As ment ioned before there 

exists an OA(n - w + 1, n, 2") and hence there exists an (n, w, 2"  - 1) M D S - C W  code. 
Similarly, there exists an (n,w,2 "+1 - 1) M D S - C W  code. Since 2 ~ - 1 and 2 "+1 - 1 

are relatively primes it follows, by using the conduc to r  theorem of Frobenius  [22, 
p. 376], that  every integer k, such that k > 21"+1 - 2 m+2 - 2 "+1 + 3 can be repre- 

sented as k = r1(2" - 1) + r2(2 m*l - 1), where r l , r2  >>- O. Therefore, by Theorems 18 
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and 19, for each n and w there exists a ko such that for each k/> ko there exists an 
(n,w,k) MDS-CW code. []  

Let KMDS(n, w) be the smallest integer such that for each k >>. KMDS(n, w) there 

exists an (n, w, k) MDS-CW code. The upper bounds on KMDS(n, w) given in The- 
orem 23 might be weak, while the lower bounds of Theorem 21 might be impossible to 

attain. An interesting question is to find the exact value of KMDS(n, w). Usually, the 

bound of the proof of Theorem 23 can be improved by the same technique, if we will 
find a prime power q, n - 1 ~< q < 2 m+l such that q - 1 and 2 m -  1 are relatively 

primes. Theorem 23 can be also obtained from the results of Blanchard [4] mentioned 

before, but the proof  of Theorem 23 is much simpler than Blanchard proofs, and 
the bounds are much better than the ones which can be obtained from Blanchard 
proofs. 

9. Open problems for further research 

The discussion on constant weight codes over arbitrary alphabet is far from being 

completed. We did not discuss bounds on sizes of codes which are not generalized 

Steiner systems or MDS constant weight codes. Some generalizations of Johnson 

bounds are quite easy to obtain [19]. Also, optimal codes which are derived from 
generalization of Hadamard  matrices [7] are easy to obtain. The discussion given in 

the first eight sections raise many open problems. We gave constructions for only 
a few cases, but many more remain without a construction. We would really like to see 
progress made in the following questions. 

1. Find more constructions for generalized Steiner triple systems. 
2. One can easily verify that for GS(t,w,m,k) with k > 1 and t ~ w, we must have 

rn > w. But a better lower bound on the length of the code would be very interesting. 
3. Show more values of k for which the necessary conditions for the existence of 

GS(2, 3, n, k) is also sufficient from some n >~ no. 

4. Find generalized Steiner quadruple system GS(3,4,n,2) for some n -  1 or 
5(mod 6). 

5. Find more constructions for generalized Steiner quadruple system. 

6. Find more Steiner quadruple system which can be used in the proposed 
constructions of Section 5. 

7. Given k and w, show that there exists an no such that for all n >/no, where 
w divides nk, S(1,w,n,k) exists. 

8. Find more constructions for double designs, or show when they cannot exist. 
9. Find more constructions for generalized designs GSd(t,w, rn, k), where 

d > w - t + l .  

10. Fine more MDS-CW codes for parameters where the relevant MDS code does 
not exist or not known. 

11. Find better lower and upper bounds on KMDS(n, w). 
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A. Appendix 

GS(2, 3, 4, 2): 

{ [ I ,  I I , [2, I I , [3, I ] }  

{[0, 1],[1, 1],[3,2]} 

GS(2, 3, 7, 2): 

{[0, 1], [1, 1], [2, 11} 

{[I ,  I], [4, I], [6, I ]}  

{ [0, 2], [2, 2], [4, 1] } 

{ [0, 2], [2, 1], [6,2]} 

{ [1, 2], [4, I], [5,2]} 

{ [2, 2], [5, 2], [6, 11 } 

{ [3, 2], [4, 13, [6, 21 } 

GS(2, 3, 9, 2): 

{[0, I ] , [ i ,  I ] , [2, I ] }  

{[0, 1], [4, 1], [8, 1] } 

{ [,1, 1], [5, 1], [7, 1] } 

{ [0, 21, [1,21, [3, 11} 

{ [0,2], [,5,2],[7, 1]} 

{[1,2], [2,2], [5, 1] } 

{ [1,2], [6,2], [7. 1]} 

{ [2, 2], [-4, 2], [6, 1] } 

{[2,2],[7,1],[8,21} 

{[1, 1], [3, 2], [7, 2] } 

{ [4,2], [5, 11,[7,2]} 

{[1, 1], [5,2], [8,2] } 

GS(2, 3, 10, 2): 

{ [0, I], El, 11, [2,1 I }  

{[0, I], [4, I], [8, I ] }  
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[1,2],[2,21,[3,2]} {[0,1],[1,2],[2,1]} {[0,21,[1,1],[2,2]} 

[0,2],[1,2],[3, 11} { [0, 1],[2,2],[3, 1]} { [0,2],[2, 1],[3,2]} 

[0, 1], [3, 11, [4,11} 

[2, 1], [3, 11, [6, 11 } 

[0, 2], [3, 2 l, [5,11 } 

[,1, 2], [2, 2], [5, 1]} 

[0, 1], [1, 2], [6,2] } 

[,1, 1], [2, 2], [6,2] } 

[0, 1],[4,21, [5,21} 

[0,1], [5,1], [6,1]} 

[2,1], [4,1], [5,1]} 

[0, 2], [4, 2], [6,1] } 

[1,2],[3,2], [6,11} 

[0,1], [2, 2], [3, 2] } 

El, 11, [,3,2], [4,2] } 

[4, 2], [5, 1], [6, 21 } 

El, t], [3, 11, [5, 11} 

[0,2], [1,2],[3, 1]} 

[0, 2], [1, 1], [5,2]} 

[1,21,[2, 1], [4, 2]} 

[2, 2], [3, 1], [4, 2] } 

[2, 1], [3, 2], [5, 2] } 

[3, 1], [5,2], [6, 2] } 

[3, 1], [4, 1], [5, 1] } 

[0, 1], [5, 1], [6, i]} 

[2, 1], [3, 11, [6, 1] } 

[0, 2], [2, 2], [4, 1] } 

[0, 2], [6, 2], [8, 1] } 

El, 21, [3, 21, [4,11 } 

[1,2], [7, 2], [8, 1]} 

[2, 21, [3, 11, [5, 2] } 

[3, 2], [4, 21, [7, 1] } 

[3, 2], [6, 1], [8, 21 } 

[3, 1], [4, 2], [8,2] } 

[3, 11, [6, 2], [7, 21 } 

[6, 1], [7, 1], [8, 11} 

El, 11, [3, 1], [8, 11} 

[2, 1], [,4, 1], [7, 11} 

[0, 2], [2, 11, [3, 21 } 

[0, 2], [6,11, [7, 21 } 

[1,2], [2, 1], [4,2] } 

[0, 1],[1,2], [g,21} 

[1,1], [2, 2], [6, 2] } 

{ [0, 1], [3,2], [5,2] } 

[4, 2], [5, 2], [8,1]} 

[4, 1], [5, 2], [6, 21 } 

[2, 1], [6, 2], [8, 2] } 

[0, 11, [3, 11, [7, 1]} 

El, 11, [4, 1], [6, 11 } 

[2, 11, [5, 11, [8, 1]} 

[0,21, [1,1],[4,2]} 

[0, 21, [5, 1], [8, 2] } 

[1, 2], [5, 2], [6, 1]} 

[2, 2], [,3, 21, [8, 1]} 

[0, 1],[2,2], [7,2] } 

[3, 2], [5,11, [6, 2] } 

[-0, 11, [4, 2], [6, 2] } 

[2, 1], [5, 2], [-7, 23 } 

[4, 1], [7, 2], [8, 2] } 

[3,11,[4,1],[5,1]} [6,1],[7,11,[8,11} {[0,1],[3,1],[7,1]} 

[0,1],[5,1],[6,1]} [1,1],[3,1],[8,1]} {[1, I],[4,1],[6,11} 



{1-1, 1], [5, 1], [7, 

{ [0, 2], [1,2], [-2, 

{ [4, 2], [7, 1], [9, 

{ [-0, 23, [3, 13, [-9, 13 

{ 1-1,2], [-2, 1], [6,2] 

{[1, 1], [-2, 2], [4, 2] 

{ [2, 2], [-3, 1], [8,2] 

{ [-3,2], [5, 1], [-7, 2] 

[3, 1], [-4, 2], [7, 2] 

[-0, 1], [5,2], [-8,2] 

[6, 2], [8, 1],[9,2]} 

{ [-0, 2], [-2, 1], E4, 2] } 

{ [-0, 2], [-1, 1], [-8, 2] } 

GS(2, 3, 9, 3): For  

{[-O,i],[1,i],[2, i 

{ [0, i], [-4, i], E5, i 

{ 1-0, i], [7, i], 1-8, i 

{[-1,i],[-3,i],[-5,i 

{[1,i],[6,i],[-8,i 
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1]} { [2, 1],[3, 1],[6, 1]} 

2]} { [3,2],[4,2],[5,2]} 

1] { [3,2], [6, 1], [9, 1] } 

{ [2, 1], [8, 2], [-9, 13 } 

{ [0, 1], [-1, 2], [7,2] } 

{ 1-2, 23, [-4, 13, [5, 23 } { [2, 
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{ [0, 2], [-5, 1], 1-9, 2] } 

{ [-3, 2], [4, 1], [-8, 2] } 

{ [4, 2], [-6, 1], 1-8,2] } 

{ [2, 1], [3, 2], [9, 2] } 

{ [-4, 1], [7, 2], [-9,2] } 

{ [0, 2], [-5, 2], 1-7, 1] } 

{ [-1,2], [3, 2], [7, 1] } 

{ I-2, 1], [4, 1], [7, 1] } { [2, 1], [5, 1], [8, 1] 

{ [6, 2], [-7, 2], [8, 2] } { [5, 2], [8, 1], [9, 1] 

{ [2,2], [5, 1], [9, 1]} { [1,2], [4, 1], [9, 1] 

{ [1, 1], 1-7,2], [9, 1]} { [0, 1], [6, 2], [9, 1] 

{ [-1, 2], [5, 1], [8,2] } { [-0, 1],1-2,2], [3, 2] 

2], [6, 2], [7, 1] } { [2, 2], [7, 2], [8, 1] 

{ [-1,2],[3, 1],[9,2]} { [1, 1],[3,2],[6,2] 

{ [2, 2], [-6, 1], [9, 23 } { [4, 2], [5, 1], [6, 2] 

{ [-3, 1],[5,2],[6,2]} { [-2, 1],[-5,2],[7,2] 

{ [0, 1], [4,2], [-9,2] } { [1, 1], [5,2], [-9,2] 

{ [7, 1],[8,2], [9,2] } { [0, 2], [3,2], [8, 1] 

{ [-0, 2], [4, 1], [6, 2] } { [-0, 2], [6, 1], [-7, 2] 

{ [1,2],[-4,2], [-S, 1]} { [1,2],[5,2],[6, 1] 

i ~ Z Z 3  form the following blocks: 

+ 1]} {[0,i],[2,i],[3,i+ 1]} { [0 , i ] , [1 , i+  1],[3, i]} 

+ 1]} {[0,i],[5,i],[6,i+ 1]} {[0,i],[6,i],[7,i+ 1]} 

+ 1]} {[0,i] ,[4,i  + 1],[-8,i]} {[1,i],[2,i],[4, i+  1]} 

+ 1]} { [0 , i+  1],[1,i] ,[4,i]} {[1,i],[5,i],[7,i+ 1]} 

+ 1]} {[1,i],1-6, i+1 ] , [ 7 , i ] }  {[1,i],1-3,i+ 1],[8, i]} 

{E2, i3,[3,i3,[6, i + 13} {[2,i3,[4,i3,[7, i + 13} {E2,i],E5,i],[8,i + 12} 

{[0, i +  1],[2, i] ,[6,i]} {[2,i],[5, i +  1],[7,i]} { [1 , i+  1],[2, i] ,[8,i]} 

{[3,i],[4,i],[8, i+  1]} { [2 , i+  1],[3,i],E5,i]} { [3 , i ] , [4 , i+  1],[6, i]} 

{[0, i +  1],[3,i],E7,i]} { [3 , i ] , [7 , i+  1],[8,i]} {E3,i+ 1],[4,i] ,[5,i]} 

{ [2 , i+  1],[4, i] ,[6,i]} { [1 , i+  1],E4,i],1-7,i]} { [4 , i ] , [6 , i+  1],[8, i]} 

{ [1 , i+  1],[5, i],[6, i]} { [4 , i+  1],[5, i] ,[7,i]} { [0 , i+  1],[5, i],[8, i]} 

{[3, i +  1],[6, i],E7, i]} { [5 , i+  1],[6, i] ,[8,i]} {E2,i+ 1],EV, i],E8,i]} 

GS(3, 4, 8, 2): For  i ~ Z Z 2  form the following blocks: 

{ [O,i],[1,i],E2,i],E3,i 

{[O,i],[1,i],[5,i],[6,i 

+1]} {[O,i],[1,i],[3,i],[4, i + 1]} {[0,i],[1,i],[2, i+1],[4,i]} 

+1]} {[O,i],[1, i],[6,i],[7,i + l]} {[0, i],[1,i],[5, i+1],[7, i]} 

79 
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{[0, i],[2, i],[3, i],[5, i + 1]} { [0, i],[2, i],[4, i],[7, i + 1]} 

{[0,i3,[2,i],[4,i + 13, [-6,i]} 

{[0,i3,[3,i3,[5,i],[7,i + 13} 

{ [0,i], [3,i + 1], [4,i], [5,i] } 

{ [0,i], [2,i + 1], [5,i], [6,i] } 

{[1,i],[2,i],[3,i],[6,i + 1]} 

{[0,i + 1],[1,i],[2,i],[6,i]} 

{[1,i],[2,i + 1],[3,i], [5,i]} 

{[0,i + 1],[1,i],[4,i],[5,i]} 

{[1,i],[4,i + 1], [5,i],[6,i]} 

{[0,i + 1],[2,i],[3,i],[4,i]} 

{[1,i + 1],[2,i],[3,i],[7,i]} 

{[2,i],[-3,i + 1],[4,i],[7,i]} 

{1-2,i],[-5,i + 1],[6,i],[7,i]} 

{[3,i],[4,i],[5,i + 1], [7,i]} 

{[3,i],[4,i + 1],[6,i],[7,i]} 

{ [0,i],[2,i],[6,i + 1],[7,i]} 

{ [0,i], [1,i + 1], [3,i], [6,i]} 

{ [0,i], [4,i], [5,i + 1], [6,i] } 

{ [0,i], [4,i + 1],[5,i],[7,i]} 

{ [1,i],[2,i],[4,i],[5,i + 1]} 

{ [1,i],[2,i],[4,i + 1],[7,i]} 

{ [1,i],[3,i],[5,i + 1],[6,i]} 

{ [1,i],[3,i + 1],[4,i],[6,i]} 

{ [-1, i], [3, i + 1], [5, i], [7, i] } 

{ [2,i], [3,i], [4,i + 1],[5,i]} 

{ [2, i], [4, i3, [5, i], [6, i + 13 } 

{ [2, i], [3, i + 1], [5, i], [6, i] ) 

{ [1,i + 13,[3,i],[4,i],[5,i]} 

{ [0,i + 13,[3,i],[5,i],[6,i]} 

{ [4,i],[5,i],[6,i],[7,i + 1]} 

{[0, i +  1],[4,i],[6, i],[7, i]} {[1 , i+  1],[5, i],[6, i],[7, i]} 

;(3,4, 10,2). Fo r  i ~ Z Z z  form the fol lowing blocks:  

{[0,i],[1,i + 1],[4,i + 1],[5,i]} 

{[0,i],[5,i],[7,i + 1],[g,i + 1]} 

{[1,i],[4,i],[7,i + 1],[8,i + 1]} 
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{ [0, i], [1, i + 1], [2, i], [5, i] } 

{[0, i],[3, i],[4,i],[6, i + 1]} 

{ [0, i], [2, i + 1],[3, i],[7, i]} 

{ [0, i], [1, i + 1], [4, i], [7, i]} 

{ [0, i],[3, i + 1],[6, i],[7, i]} 

{ [1, i],[2, i],[5,i],[7,i + 1]} 

{ [1, i],[3,i],[4,i],[7,i + 1]} 

{ [0,i + 1],[1, i],[3, i],[7, i]} 

{ [1, i], [4,i], [6, i + 1],[7, i] } 

{ [1, i],[2, i + 1],[6, i],[7, i]} 

{[2, i],[3, i],[6, i],[7,i + 1]} 

{ [1, i + 1],[2, i],[4,i],[6, i]} 

{ [0, i + 1],[2, i],[5,i],[7,i]} 

{ [-2,i + 1],[3, i],[4, i],[6, i]} 

{[3,i],[5, i],[6, i + 1],[7, i]} 

{[2,i + 1],[4, i],[5, i],[7, i]} 

{[0, i],[5,i],[6, i+ i ] , [9 ,  i + 1 ] }  {[0, i] ,[2,i+1],[-3,  i+1 ] , [5 ,  i 

{[1, i],[4, i],[6, i+  1],[9,i + 1]} { [1, i],[2,i + 1],[3, i + l],[4,i  

{ [ 2 , i + 1 ] , [ 3 , i +  1],[6, i],[9,i]} {[6,i],[7, i +  1],[8, i +  l],[9, i 

{[2,i],[3, i] ,[7,i+1],[8,  i+  1]} {[0,i],[1,i],[5, i+1],[6,  i + 1 ] }  {[0, i],[1,i],[2, i+1],[4,  i + 1  

{[0, i],[1, i],[7, i + 1 ] , [ 9 , i + 1 ] }  {[0,i],[1,i],[3, i+1],[8,  i + 1 ] }  {[2 , i+1] , [4 ,  i+1] , [5 ,  i],[6,i 

{[5,i],[6, i] ,[7, i+ 1] , [9 , i+ 1]} {[3, i +  1],[5, i],[6, i],[8, i+  1]} {[2, i],[4, i],[7, i + 1 ] , [ 9 , i +  1 

{[2, i ] , [3 , i+1] , [4 ,  i],[8, i +  I]} { [3 , i+1] , [7 ,  i ] , [8 , i+  1],[9,i]} {[0, i],[2, i],[5, i + 1 ] , [ 7 , i + 1  

{[0,i],[1, i +  1],[2, i ] , [6 , i+  1]} {[0, i],[2,i],[3, i+  1],[4, i +  1]} {[0, i] ,[2 , i] ,[8 , i+1],[9, i+ 1 

{[1, i+1] , [5 ,  i],[6, i +  1],[7,i]} { [3 , i+1] , [4 ,  i +  1],[5,i],1-7, i]} {[5, i],[7, i] ,[8,i+1],[9,  i + 1  

{[1,i],[3, i +  1] , [4 , i+ 1],[6,i]} ~[1,i],[6,i],[8, i + 1 ] , [ 9 , i + 1 ] }  {[3, i],[4,i],[8,i+ 1],[9, i + 1  
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~0, i],[3, i],[5, i +1],[8, i + 1]} {[0,i],[1, i + 1 ] , [ 2 , i + 1 ] , [ 3 ,  i]} {[0,i],[3,i],[6,i+ 1],r7, i+ I 

[0,i],[3, i],[4, i + 1],[9,i + l]} 

[4, i + 12,[5, i2,[8, i],[9,i + 1]} 

[4, i + 1],[6, i],[7,i],[9, i + 1]} 

[0, i],[4, i],[6, i + 1],[8, i + 1]} 

{[5, i],[6, i+  1],[8, i + 1],[9, i]} 

{ [ l , i ] , [ 2 ,  i + 

{ fO, i], [2, i + 

{ [1 , i ] , [2 ,  i + 

{[2, i], [3, i + 

{[0, i], [1, i + 

{ [0, i], [4, i + 

{ [1 , i ] ,  [4, i + 

{ [3, i],1-4, i + 

{[0, i], [3, i + 

{[1, i ] ,  [3, i + 

{ [2, i], [4, i + 

{ [0, i], [2, i + 

{El, i] ,  [2, i + 

1], [3, i], [7, i + 1]} 

1],[6,i],[8,i + 1]} 

1],[7,i],[8,i + 1]} 

l] ,[8,i j ,[9,i  + 1]} 

1], [7,i], [8,i + 1]} 

l],[6,i + 1],[7,i]} 

1],[6,i + 1],[8,i]} 

t] ,[5,i] ,[6,i  + l]} 

I],[6,i + 1],[8,i]} 

I],[6,i + i],[9,i]} 

1],[5,i],[7,i + 1]} 

1],[6,i + 1],[9,i]} 

1], [5,i], [6,i + 1]} 

{[2,i], [3 , i+  1],[6,i],[7,i + 1]} 

{[O,i],[l,i],[2,i],[5,i] 

{[0,i],[2,i],[4,i],[6,i] 

{[0,i], [3,i],[4,i],[8,i] 

{[0,i],[2,i],[3,i],[9,i] 

{[0,i],[5,i],[8,i],[9,i] 

{[l,i],[5,i],[7,i],[S,i] 

{[3,i],[6,i],[7,i],[8,i] 

{[0,i],[4,i],[5,i],[7,i] 

{[2,i],[3,i],[5,i],[8,i] 

{[1,i],[4,i], [6,i],[7,i] 

{ [1 , i+  13,[2,i + 13,[5,i],[8,i3} 

{[1,i3,[2,i],[6,i + 13,[7,i + 13} 

{[0, i] ,[4, i] ,[5, i+1],[9, i+ 1]} 

{[0,i],[2,i + 1],[4,i],[7,i + 1]} 

{ [2,i + 1],[5,i],[7,i + 1],[9,i]} 

{ [2,i + 1] ,[6, i] , [7, i+ 1],[8,i]} 

{ [0,i],[3,i + 1] ,[6, i] , [9, i+ 1]} 

{ [1,i],[3,i + 1],[7,i],[9,i + 1]} 

{[2 , i ] , [4 , i+  1] ,[5, i+ 1],[8,i]} 

{[0 , i ] , [2 , i+  1] ,[7, i] , [9, i+ 1]} 

{ [1,i],[2,i + 1],[8,i],[9,i + 1]} 

{ [2,i],[3,i + 1],[5,i + 1],[9,i]} 

{ [0,i] ,[ i , i  + 1],[8,i],[9,i + 1]} 

{ [0,i], [4,i + 1],[7,i + 1],[8,i]} 

{ [1,i],[4,i + 1],[7,i + I],[9,i]} 

{[3,i],[4,i + I],[6,i],[7,i  + 1]} 

{[0, i ] , [3 , i+ I ] , [7 , i+  1],[9,i]} 

{[1, i ] , [3 , i+ 1],[5,i],[7,i+ 1]} 

{ [2 , i ] , [4 , i+ 1],[6, i] ,[8, i+ i]} 

{[1,i],[3,i],[4,i3,[5,i3} 

{[2,i],[3,i],[4,i],[7,i]} 

{ [1,i],[2,i],[4,i],[8,i]} 

{[4,i],[7,i3,[8,i],[9,i]} 

{ [0,i],[6,i],[7,i],[9,i3} 

{ [2,i],[5,i],[6,i],[7,i]} 

{ [3,i],[5,i],[7,i],[9,i3} 

{ [0,i], [1,i],[6,i],[8,i]} 

{ [2,i],[4,i],[5,i],[9,i]} 

{ [O,i],[2,i],[7,i],[g,i]} 

{[5, i ] , [6 , i+  1] , [7, i+ 1],[8,i 

{[1,i],[2,i],[4,i+ 1],[9, i+ 1 

{[0 , i ] , [1 , i+  1] ,[3, i+ 1],[4,i 

{ [1 , i+  1],[3,i + t],[5,i],[9, i 

{[1,i],[3,i],[6,i+ 1],[8, i+ 1 

{ [0 , i ] , [1 , i+ 1] ,[6, i] , [7, i+ t 

{[0 , i ] , [4 , i+  1] ,[5, i+ 1],[6,i 

{[1 , i ] , [4 , i+  t ] , [ 5 , i+  1],[7,i 

{[3 , i ] , [4 , i+  1] , [5, i+ 1],[9,i 

{[0 , i ] , [3 , i+  1] , [5, i+ 1],[7,i 

{[1 , i ] , [3 , i+  1] , [5, i+ 1],[8,i 

{[2 , i ] , [4 , i+  1] , [6, i+ 1],[9,i 

{[0 , i ] , [2 , i+  1] ,[5, i+ 1],[8,i 

i ] , [2 , i+  i ] , [5 , i+  1],[9,i 

[2 , i ] , [3 , i+  1] ,[5, i] , [6, i+ 1 

[0 , i ] , [ i , i+  1] ,[5, i+ 1],[9,i 

[0 , i ] , [4 , i+ I ] , [8 , i+  1J,[9,i 

[ I , i ] , [4 , i+  1],[5,i],[8,i + 1 

[3,i3,[4,i+ 13,[7,i3,[8,i + I 

[1,i],[2,i3,[3,i],[6,i] 

[O,i],[1,i],[3,i],[7,i] 

[O,i],[1,i],[4,i],[9,i] 

[4, i], [5, i], [6, i], [8, i] 

[1,i],[5,i],[6,i],[9,i] 

[2,i],[6,i],[8,i],[9,i]} 

[3,i],[4,i],[6,i],[9,i]} 

[1,i],[2,i],[7,i],[9,i]} 

[0,i],[3,i],[5,i],[6,i]} 

[1,i],[3,i],[8,i],[9,i]} 
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