
1472 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 5, SEPTEMBER 1996

A Method for Constructing
Decodable de Bruijn Sequences

Chris J. Mitchell, Member IEEE, Tuvi Etzion, Member IEEE, and Kenneth G. Paterson

Abstract-In this paper we present two related methods of
construction for de Bruijn sequences, both based on interleaving
“smaller” de Bruijn sequences. Sequences obtained using these
construction methods have the advantage that they can be “de-
coded” very efficiently, i.e., the position within the sequence of
any particular “window” can be found very simply. Sequences
with simple decoding algorithms are of considerable practical
importance in position location applications.

Index Terms-Decoding, de Bruijn graph, window sequence,
de Bruijn sequence.

I. INTRODUCTION

A. De Bruijn Sequences and the Decoding Problem

D E BRUIJN SEQUENCES, i.e., periodic sequences with
elements taken from a finite alphabet in which every

possible v-tuple of elements appears precisely once in a period
(for some v), have been well studied for many years, see, for
example, [l], [2]. Many constructions are known, and a useful
survey has been given by Fredricksen [2].

However, the decoding problem, i.e., the problem, of dis-
covering the position within a particular sequence of any
specified v-tuple, has been much less well studied. This is
notwithstanding the fact that for certain well-known practical
applications of de Bruijn sequences, including their use for
position location (see, for example, [3]-[5]), the decoding
problem is an important one. Over and above its practical
significance, the decoding problem has been listed by Chung,
Diaconis, and Graham [6] as one of the “fundamental ques-
tions” for the study of de Bruijn sequences.

Previous work on the decoding problem can be summarized
as follows.

l The obvious approach is the “brute-force” method of
storing a lookup table of the positions in the sequence
of all possible w-tuples. Alternatively, successive states
of the sequence can be generated until the desired v-tuple

Manuscript received July 14, 1995; revised April 2, 1996. The work of T.
Etzion was supported in part by the EPSRC under Grant GR/K38847. The
work of K. G. Paterson was supported by a Lloyds of London Tercentenary
Foundation Research Fellowship.

C. J. Mitchell is with the Computer Science Department, Royal Holloway,
University of London, Egham, Surrey TW20 OEX, England.

T. Etzion is with the Computer Science Department, Royal Holloway,
University of London, Egham, Surrey TW20 OEX, England, on leave from
the Computer Science Department, Technion-Israel Institute of Technology,
32000 Haifa, Israel.

K. G. Paterson is with the Mathematics Department, Royal Holloway,
University of London, Egham, Surrey TW20 OEX, England.

Publisher Item Identifier S 0018.9448(96)05757-4.

is found. These methods are too inefficient for use with
anything except relatively short sequences.
A “milestone” approach to the decoding of the de Bruijn
sequences derived from m-sequences can be derived from
the work of Petriu [5]. The idea is a simple development
of the brute-force approach of stepping a linear feedback
shift register, equipped with feedbacks which generate the
m-sequence, through all possible states until the desired
tuple is obtained. The milestone idea is to store every nth
shift register state (i.e., every nth tuple in the sequence)
for some n; these form the milestone values. A particular
v-tuple to be “decoded” is then used to define the initial
state of the register, which is stepped until a stored
value is obtained. This approach does not reduce the
computational complexity of decoding below the brute-
force value; it is simply a time/space tradeoff (albeit not
without practical merit for relatively small values of w).
Another decoding method also applies to the de Bruijn
sequences derived from binary m-sequences. Consider
the successive states of a v-stage “Galois” feedback
register, equipped with feedbacks corresponding to a
primitive polynomial. It is a well-established fact (see,
for example, [7]) that, if these states (binary v-tuples) are
regarded as binary vectors with respect to an appropriate
basis, then the successive states are simply successive
powers of a primitive element in the finite field GF (2”)
when regarded as a v-dimensional vector space over
GF(2). Hence finding the position of any given state in
this sequence of states is precisely equivalent to finding
discrete logarithms in this field.

Massey and Liu [8] showed that there always exists a
linear transformation mapping the sequence of states of a
Galois register into the corresponding sequence of states
of a “conventional” feedback register. This means that
the decoding problem for m-sequences (and de Bruijn
sequences derived from them) is equivalent to the dis-
crete logarithm problem over GF (2”). Although finding
discrete logarithms is nontrivial, algorithms considerably
more efficient than the brute-force approach are known;
see, for example, [9].
The only other method known to the authors applies to
a different class of de Bruijn sequences; namely, those
derived by repeated application of the inverse of Lempel’s
homomorphism [lo]. Paterson and Robshaw [l l] have
shown that such sequences can be decoded recursively.
Although this technique achieves a time/space tradeoff,
its overall complexity remains essentially the same as the

0018-9448/96$05.00 0 1996 IEEE

MITCHELL et al.: A METHOD FOR CONSTRUCTING DECODABLE DE BRUIJN SEQUENCES 1473

brute-force methods, unless some information is already
available about the approximate location of the v-tuple in
the sequence.

It should be clear that all the existing approaches have
significant limitations; even the discrete logarithm method is
computationally complex, and is nontrivial to implement.

In this paper we present two related methods of construction
for de Bruijn sequences. We also describe algorithms which
can be used to decode these sequences much more efficiently
than any of the previously known techniques.

B. Preliminary Dejinitions and Notation

We first set up some notation which we will use throughout
the paper.

We are concerned here with c-ary periodic sequences, where
by the term c-ary we mean sequences whose elements are
drawn from the set (0, 1, . . , c - 1). We refer throughout to
c-ary cycles of period n, by which we mean periodic sequences
(so, CSl,. ‘. ,s,-1) where s; E {O,l,...,c - 1) for every
i, (0 < i <n).

If t = (ta,tr,. . . , t,-I) is a c-ary v-tuple (i.e., ti E
(0, 1, ... , c - l} for every i, (0 5 i < w)), and s = (SO,
sr,...,s,-1) is a c-ary cycle of period n (n 2 II); then we
say that t occurs in s at position j if and only if

t; = si+J

for every i, (0 5 i < v), where i + j is computed modulo n.
Throughout we will write Oi for the i-tuple of all zeros and

li for the i-tuple of all ones.
If s = (se, ~1,. . , s,-1) is a c-ary cycle of period n, then

we say that s is a u-window sequence if no c-ary v-tuple occurs
in s in two distinct positions within a period of s. Equivalently,
s contains n distinct v-tuples in a period of the cycle. A c-
ary de Bruijn sequence of span v is then simply a v-window
sequence of period equal to c”; equivalently, every possible
c-ary v-tuple occurs precisely once in a period of a de Bruijn
sequence.

A c-ary punctured de Bruijn sequence of span u (sometimes
called a pseudorandom sequence) is a u-window sequence in
which every c-ary v-tuple except for 0” occurs, and so a
punctured de Bruijn sequence has period c” - 1. A span-v
de Bruijn sequence can be “punctured” by deleting one of
the zeros in O”, and a punctured de Bruijn sequence can be
transformed into a de Bruijn sequence by adding a zero to
any one of the c - 1 occurrences of O”-r. Similarly, a c-ary
doubly punctured de Bruijn sequence of span u is a v-window
sequence in which every c-ary v-tuple occurs except for 0”
and l”, and hence a doubly punctured de Bruijn sequence has
period cV - 2. A de Bruijn sequence can be “doubly punctured”
by first puncturing it and then deleting one of the ones in l”,
and a doubly punctured de Bruijn sequence can be transformed
into a de Bruijn sequence by adding a zero to any of the c - 1
occurrences of Ov--l, and adding a one to any of the c - 1
occurrences of l”-r .

If s = (so, ~1, . . , s,-1) and t = (to, tl, . . . , t,-1) are two
cycles of the same length, n say, then the interleaving of these
cycles, denoted Z(s, t), is defined to be the following cycle of

length 2n:

11. AN INTERLEAVING CONSTRUCTION
FOR WINDOW SEQUENCES

We now present a method for constructing a c-ary cycle
with the window property.

A. The Construction Method

Before describing the method of construction we need the
following definition.

Definition 1: If a is a c-ary v-window sequence of period
n, then a is said to satisfy Condition A if and only if the
following three conditions are met:

l n is even,
l a does not contain the all-zero w-tuple, and
l a contains O”-l at position 0 (it may contain other

occurrences of OV--l).
Construction 2: Suppose n, c, w are positive integers (c 2

2). Moreover, suppose that a = (au, al . . . , a,-~) is a c-ary
v-window sequence of period n satisfying Condition A.

Let b be the cycle of period n + 2 obtained from a by
inserting two extra zeros at the start of the cycle; this has the
effect of replacing O”-l at position 0 with 02’+l. (Observe that
6 is “almost” a u-window sequence, with the single exception
that 0” occurs twice in consecutive positions-this fact is of
key importance to the construction method).

Now let

where, as throughout, as denotes the cycle obtained by con-
catenating s copies of cycle a.

We can now state and prove the following result.
Theorem 3: Suppose n, c, v and a satisfy the conditions of

Construction 2. If d is constructed from a using Construction
2 then d is a 2u-window sequence of period n(n + 2) which
satisfies Condition A.

Proof If 0 5 i < n, let ai be the w-tuple occurring in
a at position i; similarly, if 0 2 j < n + 2, let bj be the v-
tuple occurring in b at position j. Then the 2w-tuples of d are
precisely

1@2i,a2j) 0 5 i I n/2, 0 5 j < n/2 - 1

@2;+1, a2j+l) 0 I i 5 71/T 0 5 j 5 ,n/2 - 1

Z(azi,baj+l) 0 I i I 42 - 1, 0 5 j 5 n/2

Z(azi+l,bzj) 0 I i In/2 - 1, 0 < j < n/2.

All tuples of this form occur exactly once in d, because
(n,n + 2) = 2.

Next observe that each of the above four classes consists
of n/2(n/2 + 1) distinct 2v-tuples, and the four classes are
pairwise-disjoint. This latter point follows because the set of
tuples {aai} is precisely the same as the set of tuples {bzi}
(with the exception of 0”), and the set of tuples {aai+r} is
precisely the same as the set of tuples {&+r } (again with the
exception of 0”). Hence d is a 2v-window sequence.

1414 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 5, SEPTEMBER 1996

It remains for us to show that d satisfies Condition A. First
observe that d has period n(n + 2) which is even since n is
even. Next observe that since a does not contain 0” it follows
immediately that d cannot contain 02”. Finally, observe that,
since Ov+r occurs at position 0 in b and Owe1 occurs at
position 0 in a, then 02v-1 occurs at position 0 in d. The
result follows. 0

B. Application of the Construction Method

First observe that if c is odd then an example of a v-window
sequence a of period cv - 1 satisfying Condition A can be
obtained by taking an appropriate cyclic shift of a c-ary span
w punctured de Bruijn sequence. The cycle d resulting from
an application of Construction 2 to a will then have period
(c” - l)(c” + 1) = c2v - 1, and will be a c-ary span 2w
punctured de Bruijn sequence (enabling the construction to be
applied recursively).

The situation is not so convenient in the case where c is
even (which obviously includes the binary case), where the
best that can be done is to note that an appropriately shifted
c-ary span u doubly punctured de Bruijn sequence (of period
cw - 2) is an example of a sequence satisfying Condition A.
We will address this case in Sections III and IV below.

C. Example

Before proceeding we consider two simple examples of the
construction method.

Example 4: Let n = 6, c = 2, and v = 3. Let a be the
following cycle:

(0 0 1 0 1 1).

Note that a is a 2-ary span 3 doubly punctured de Bruijn
sequence. The cycle b is as follows:

(0 0 0 0 1 0 1 1).

We then have
d =Z(b3,a4)

=(O 0 0 0 0 10 0 110 110 1

and ani2+l is

(0 1 1 0 2 1 2 2 0 1 1 0 2
122011021220
110212201102
1 2 2).

Hence d is

(0 0 01011012 012 2
1220210100021
1120220112120
0201021210012
1102221020200
1111002211222

2)

and d is a 3-ary span 4 punctured de Bruijn sequence.

D. A Decoding Algorithm

We now present a simple algorithm for decoding cycles
which have been derived using Construction 2. This algorithm
makes use of a decoder for the cycle a used as input to the
construction.

Algorithm 6: Suppose n, c, v, and a satisfy the conditions
of Construction 2, and that d has been constructed from a
using this construction. Suppose also that the function E is a
decoder for a, i.e., if 3: is some v-tuple occurring in a then
0 5 E(z) < n and z occurs in a at position E(z).

Define the function F:T --f {O,l, ... ,n(n + 2) - l} as
follows, where T is the set of all c-at-y (2w)-tuples which
occur in d. First suppose x E T, and let

x = Z(y,z).

Let m be the unique solution (mod n(n + 2)/2) to the
simultaneous congruences

00100010110001
C

E(z), if y = 0” or E(z) - E(y) is even
m = E(Y),

mod n
11001010000110
0 1 1 1 1).

d is a binary 6-window sequence of period 48.

if z = 0” or E(z) - E(y) is odd
Oor 1, if y=O”
n+lorO, if z=O”

m E E(y) + 2, if E(z) - E(y) is even modnf2

Example 5: Let n = 8, c = 3, and Y = 2. Let a be the
following cycle:

(0 1 1 0 2 1 2 \ 21. ,
Note that a is a 3-ary span 2 punctured de Bruijn sequence.

The cycle b is as follows:

\ E(z) + 1, if E(z) - E(y) is odd.

Then let

2m, if y = 0” or E(z) -E(y) is even
2m+l, if z=O” or E(z)-E(y) is odd

(0 0 0 1 1 0 2 1 2 2).

Then b”/2 is
(0 0 0 1 10 2 1 2 2 0 0 0

110212200011
021220001102

1 2 2)

Theorem 7: If n, c, v, d and F are defined as in Algorithm
6, then F is a decoder for d.

Proof It should be immediately clear that every c-
ary (2v)-tuple will be covered by one of the four “cases”
of the algorithm. We now consider each case in turn. We
suppose throughout that x occurs at position p in d, where
0 5 p < n(n + 2) (we know that p is well-defined by Theorem
3).

MITCHELL et al.: A METHOD FOR CONSTRUCTING DECODABLE DE BRUIJN SEQUENCES 1475

If y = 0” then y must occur in b, and hence x occurs at an
even position in d, i.e., p = 2q for some integer q. Thus given
that 0” occurs at positions 0 and 1 in b, we have that

q=Oorl (modn+2).

Now z occurs at position E(z) in a and hence

q z E(z) (modn).

Given that p is well-defined, F must be well-defined, and
the correctness of the first case is established.

If z = 0” then z must occur in b, and hence p is odd, say
p = 2q + 1 for some integer q. Thus given that 0” occurs at
positions 0 and 1 in b, we have that

p=22n+3orl (mod2(n+2))

and hence

q+l=Oorl (modn+2).

In addition, y occurs at position E(y) in a, and hence

p E 2E(y) + 1 (modan)

and so

q = E(y) (modn).

As before, given that p is well-defined, F must be well-
defined, and the correctness of the second case is established.

If y and z are both nonzero, then either
a) p is even, p = 2q say, y occurs in b at position E(y) + 2

and z occurs in a at position E(z), or
b) p is odd, p = 2q + 1 say, z occurs in b at position

E(z) + 2 and y occurs in a at position E(y).
In case a) we have

q--E(y)+2 (modn+2)

and

q - E(z) (modn).

In case b) we have

p z 2E(z) + 3 (mod 2(n + 2))

i.e.,

q+l=E(z)+2 (modn+2)

and

p E 2E(y) (mod2n)

i.e.,

q = E(y) (modn).

The above discussion covers the final two cases, and the
result follows. 0

E. Complexity of Decoding

We now consider the complexity of the decoding method of
Algorithm 6, when applied to a c-ary (2v)-window sequence
d constructed from a c-ary u-window sequence a of period n
using the technique of Construction 2.

Suppose it takes e arithmetic operations to find the position
of a c-ary v-tuple in a. Then it is not difficult to see that
the number of arithmetic operations involved in decoding a
single c-ary v-tuple is bounded above by 2e + EA (n) +
k, where EA (n) is the number of operations required to
find the unique solution (modulo n(n + 2)/2) to a pair of
simultaneous congruences (modulo n and n + 2), and k is a
small constant. Solving a pair of simultaneous congruences
can be achieved using the well-known (and simple) Euclidean
Algorithm.

III. A RELATED CONSTRUCTION
METHOD FOR WINDOW SEQUENCES

We now present a second method for constructing a c-ary
cycle with the window property. This method is a variant of the
method presented in the previous section-it has advantages
for cycles with even-size alphabets.

A. The Construction Method

Before describing the method of construction we need the
following definition.

Dejinition 8: If a is a c-ary u-window sequence of period
n, then a is said to satisfy Condition B if and only if the
following three conditions are met:

l 2 1 n and 4 + n,
l a does not contain 0” or l”, and
l a does contain at least one occurrence of O”-l and at

least one occurrence of l”-l.
Construction 9: Suppose 72, c, 21 are positive integers (c >

2). Moreover, suppose that a = (au, al . . . , a,-~) is a c-ary
v-window sequence of period n satisfying Condition B. Let
b be a cycle of period n + 4 obtained from a by replacing
an occurrence of .O”-l with Ov+’ and an occurrence of l”-i
with IV+‘. Observe that b is “almost” a w-window sequence,
with the two exceptions that 0” and 1” both occur twice in
consecutive positions-this fact is of key importance to the
construction method.

Now let

d’ = Z(b”12, &2+2).

Finally, derive d from d’ by inserting a zero followed by a
one after one of the (2~ - 1)-tuples equal to Z(l”-l, OV-i)
followed by a one, in order to make it into a (2~ + l)-tuple
equal to 2(1”, 0”) followed by a one.

We can now state and prove the following result.
Theorem 10: Suppose n, c, u, and o satisfy the conditions

of Construction 9. If d is constructed from a using Construc-
tion 9 then d is a (2v)window sequence of period n(nS4) + 2
which satisfies Condition B.

1416 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 5, SEPTEMBER 1996

Proof The proof that this construction works is almost
identical to that of Theorem 7. Using the same argument as
given in that proof, it is straightforward to see that d’ is ‘a
2v-window sequence. We therefore need only establish that

l the derivation of d from d’ is well-defined,
l d is a 2v-window sequence, and
l d satisfies Condition B.
The first point follows from the observation that, since a

contains O”-l, and b contains lv+l, then d must contain
the (2~ - 1)-tuple: Z(l”-l, Ov-‘) followed by a one. To
establish the second point we note that the two “extra” 2v-
tuples which d contains are X(1”, 0”) and Z(O”, 1”). Since
a does not contain 0” or l”, then neither of these 2w-tuples
occurs in d’. Hence, since d’ is a 2v-window sequence then
so is d.

Finally, we need to show that d satisfies Condition B. First
note that d has period n(n + 4) + 2, which, since 2 1 n, satisfies
21n(n+4)+2 and 4 + n(n+4)+2. Secondly, since a does not
contain 0” or l”, then d does not contain 02” or 12”. Third,
d contains at least one occurrence of 02V-1 and at least one
occurrence of 12V-1 by an exactly analogous argument to that
used to show that d’ contains an alternating (2~ - l)-tuple.

The result now follows. 0

B. Application of the Construction Method

Analogously to Section III-B, if c is even then an example
of a u-window sequence a of period c” - 2 satisfying Condition
B can be obtained by taking a c-ary span w doubly punctured
de Bruijn sequence. The cycle d resulting from the application
of Construction 9 to a will have period (c” - 2)(c? + 2) + 2 =
c2u -2 and will also be a doubly punctured de Bruijn sequence 7
(since it satisfies Condition B and has period c2V - 2), thus
enabling the construction to be applied recursively.

Hence Constructions 2 and 9 provide a pair of methods
for recursively generating de Bruijn sequences for all alphabet
sizes; both methods double the window length at each iteration.
For the odd-size alphabet case we have already seen how
a computationally very simple decoder for a double-length
window sequence can be derived from a decoder for the single-
length window sequence used to construct it. In the sequel, we
will demonstrate a corresponding simple recursive decoder for
the even-size alphabet case.

C. Example

Before proceeding we consider a simple example of the
construction method (and how the cycle produced can be made
into a de Bruijn sequence).

’ Example 11: Let n = 6, c = 2, and v = 3. Let a be the
following cycle:

(0 0 1 0 1 1).

Note that a is a 2-ary span 3 doubly punctured de Bruijn
sequence. The cycle b is as follows:

(0 0 0 0 1 0 1 1 1 1).

We then have

d’ =Z(b3, a5)

=(O 0 0 0 0 10 0 1 10 1
10101110010
10000110011
11101001000
10110001110
1 1 1 1).

d’ is a binary 6-window sequence of period 60, and the only
6-tuples missing are

and

(0 0 0 0 0 0)
(1 1 1 1 1 1)
(0 1 0 1 0 1)

(1 0 1 0 1 0).

The sequence d is obtained from d’ by inserting an extra zero
and one following the tuple “10101.” Underlining the inserted
bits, we obtain

d=(O 0 0 0 0 1 0 0 1 1 0 1 1 0
101Qtl11001010
0001100111110
1001000101100
0 1 1 1 0 1 1 1 1)

which is a binary, span 6, doubly punctured de Bruijn se-
quence. To make d into a de Bruijn sequence we insert an
extra zero and one to make the (unique) all-zero and all-one
5-tuples into 6-tuples, yielding the following binary de Bruijn
sequence of period 64 (the two added bits are underlined):

(0 0 0 0 0010 0110110
10101110010100
00110011111~01
00100010110001
1 1 0 1 1 1 1).

D. A Decoding Algorithm

We next present a simple algorithm for decoding cycles
which have been derived using Construction 9; this decoding
method is very similar to that presented in Algorithm 6 above.
As with that algorithm, use is made of a decoder for the cycle
u used as input to the construction.

Algorithm 12: Suppose n, c, TJ, and a satisfy the conditions
of Construction 9, and that d has been constructed from a
using this construction. Suppose also that the function E is a
decoder for a, i.e., if x is some w-tuple occurring in a then
0 5 E(s) < n and x occurs in a at position E(x). Similarly,
suppose that the function E’ is a decoder for b (defined only
for the tuples which occur in a, and hence E’ is well-defined).

Suppose also that the particular occurrences of O”-l and
l”-l which are modified in deriving b from a, occur at

MITCHELL et al.: A METHOD FOR CONSTRUCTING DECODABLE DE BRUIJN SEQUENCES 1471

positions s and s’ in a, respectively. Suppose also, without loss
of generality, that s < s’. Finally, suppose that the (2~ - l)-
tuple of alternating zeros and ones, which is augmented to
obtain d from d’, occurs at position t in d’.

Define the functions F’: T’ 4 (0, 1, . . . , n(n + 2) - l} and
F:T --+ (0, l,... , n(n + 2) + l} as follows, where T is the
set of all c-at-y (2v)-tuples which occur in d and T’ is the
set of all c-ary (2v)-tuples which occur in d’. First suppose
z E T’, and let

E. Complexity of Decoding

x = Z(y,z).

We complete this section by briefly considering the com-
plexity of the decoding method of Algorithm 12, when applied
to a c-ary (2v)-window sequence d constructed from a c-
ary u-window sequence a of period n using the technique
of Construction 9. It should be clear that, because of the
great similarity between the two algorithms, the complexity of
Algorithm 12 is approximately the same as that of Algorithm
6, with the exception that, for each iteration, there is a need
to store the values of s, s’, and t.

Let m be the unique solution (modn(n + 4)/2) to the
simultaneous congruences

I E(z) > if y= 0” or y = 1” or
E(z) - E(y) is even

if z= 0” or z = 1” or (mod n)

E(z) - E(y) is odd

I s or s+l, if y=O”
s’ + 2 or s’ + 3, if y = 1”

if z = 0”

Hence, if it takes e arithmetic operations to find the posi-
tion of a c-ary v-tuple in a, then the number of arithmetic
operations involved in decoding a single c-ary v-tuple is
bounded above by 2e + EA’(n) + k’, where EA’(n) is the
number of operations required to find the unique solution
(modulon(n + 4)/2) to a pair of simultaneous congruences
(modulon and n + 4), and Ic’ is a small constant. Storage
space is also required for the three values s, s’, and t.

IV. ANALTERNATIVEAPPROACHFOREVEN-SIZE ALPHABETS

m = E’(y), I
s-l or s,
s’+ 1 or s’+ 2, if z = 1”

if E(z) -E(y)
(mod n + 4)

is even
E’(E) - 1, if E(a) - E(y)

is odd.

Then let

2m, if y = 0” or y = 1” or

F’(x) =
E(a) - E(y) is even

zrn + 1 , if a = 0” or z = 1” or
E(t) - E(y) is odd.

Finally, if x E T, let

if xcT’ and F’(x)<t
if x = Z(l”, 0”)
if x = 2(0”, 1”)

F’(xj+2, if XE T’ and F’(x) > t.

Remark 13: It is important to note that the function El can
very simply be derived from E as follows. Suppose x is a u-
tuple occurring in a. Suppose also that s and s’ are as defined
in Algorithm 12 (and s < s’). Then

l if 0 5 E(x) < s then E’(x) = E(x),
l if s <E(x) 5 s’ then E’(z) = E(x) + 2, and
l if s’ <E(x) < n then E’(x) = E(x) + 4.
Theorem 14: If n, c, u, d, and F are defined as in Algorithm

12, then F is a decoder for d.
Pro08 Rather than go through the proof in great detail

we observe that it follows using a very similar argument to
that used to establish Theorem 7. It should be immediately
clear that every c-ary (2v)-tuple will be covered by one of
the six ‘cases’ of the algorithm. The six individual cases then
follow using exactly analogous arguments to those employed
to deal with the four cases in the proof of Theorem 7. The
change from F’ to F is necessary to “correct” for the addition
of the extra 0 and 1 to derive d from d’. 0

Because Construction 2 only enabled the recursive con-
struction of de Bruijn sequences with odd-size alphabets,
Construction 9 was devised to deal with the even-size alphabet
case. However, an alternative approach exists for recursively
constructing de Bruijn sequences with even-size alphabets
using Construction 2 directly. We sketch that approach here.

Suppose c > 1 is even and a is a c-ary span v de Bruijn
sequence which ends with 1” and begins with 0” (there are
always such de Bruijn sequences-for example, the “prefer
ones” sequence [2]). By deleting a zero from 0” and a one
from 1” we obtain a doubly punctured de Bruijn sequence u’
with the property that the sequence ends with l”-l and begins
with O”-l; we call this Property C.

We give a method involving Construction 2 which produces
a new doubly punctured de Bruijn sequence also having
Property C, and thus the method can be iterated.

We first apply Construction 2 to u’ to obtain a sequence
d of period c2v - 2~‘“. The following properties of d are a
consequence of Theorem 3 and the construction method.

1) d is a 2v-window sequence.
2) d begins with Ozv-l and ends with 12v-2.
3) d contains all 2v-tuples, except for 02” and the tuples

Z(w, 1”) and Z(1’“) w), where w is an arbitrary w-tuple.
Now let e denote the sequence obtained from a by deleting

a one from 1” and shifting the resulting sequence right by
(v - 1) places. Thus e has period c” - 1 and begins with l”-l
followed by a zero. Let

f = T(e, lcU-l).

“conjugate” of the first 2v-tuple of f) at position cZv -

Then f has period 2~” - 2 and begins with the 2v-tuple 12v-2
followed by a zero and a one.

It is easily checked that, for each w # l”, f contains as 2v-
tuples both Z(w, 1”) and 2(1”, w), neither of which occurs in
d.

From Property 2 above, d contains an occurrence of the
2v-tuple made up of 1 2v-2 followed by two zeros (i.e.’ the

1478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 5, SEPTEMBER 1996

2c” - 2v + 2. Hence f can be joined into d at position
c2v - 2~” - 2v + 2 using Lempel’s cycle joining method [lo].
We obtain a new sequence d’ which is a doubly punctured de
Bruijn sequence satisfying Condition C.

It is not difficult to see how the decoding of d’ can be re-
duced to the decoding of a’. We leave the details to the reader,
noting only that the complexity of the resulting decoding
algorithm is marginally greater than that of Algorithm 6.

V. SUMMARY AND CONCLUSIONS

A. Decoding Long de Bruijn Sequences

We now briefly consider how de Bruijn sequences can be
recursively constructed using Constructions 2 and 9, and, in
addition, how they can be recursively decoded. Suppose we
wish to construct and subsequently decode a span u de Bruijn
sequence over a c-ary alphabet. Suppose also that ‘u = 2hv’,
where u’ is odd.

1) Odd-Size Alphabets: We start by considering use of
Construction 2, and hence suppose c is odd. First construct,
by some means, a c-at-y span 2)’ de Bruijn sequence a’. In
addition, a decoding algorithm needs to be provided for this
cycle. Note that if c is composite then, using a special case of
[12, Lemma 5.11, a c-at-y span w’ cycle can be constructed by
combining span 21’ cycles over alphabets of sizes equal to the
prime factors of c, and decoding the combined cycle can be
reduced to decoding the component cycles.

Next derive a punctured de Bruijn sequence a from a’
by deleting a single zero from 0”‘. We can now recursively
apply Construction 2 h times to a, obtaining a punctured de
Bruijn sequence after each iteration. The final output will be
a punctured c-ary de Bruijn sequence of span u = 2h~‘. This
cycle can then be decoded by recursively applying Algorithm
6 h times, which (by the discussion in Section III-E) will
involve at most 2h decodings of the span u’ cycle a, together
with the solution to 2h - 1 pairs of simultaneous congruences.

2) Even-Size Alphabets: We next consider use of Construc-
tion 9, and hence suppose c is even. As previously, construct,
by some means, a c-ary span ‘u’ de Bruijn sequence a’ with a
decoding method. Again as previously, if c is composite then
the methods of [12] can be used to simplify the decoding of
the span v’ cycle.

Next derive a doubly punctured de Bruijn sequence a from
a’ by deleting a single zero from 0”’ and a single one from 1”‘.
We can now recursively apply Construction 9 h times to a.

The final output will be a doubly punctured c-ary de Bruijn
sequence of span u = 2hv’. This cycle can then be decoded
by recursively applying Algorithm 12 h times, which (by the
discussion in Section III-E) will involve at most 2h decodings
of the span II’ cycle a, together with the solution to 2h - 1 pairs
of simultaneous congruences and the storage of 3h values.

Alternatively, the approach of Section IV can be used
to produce a doubly punctured de Bruijn sequence of span
2hv’. This cycle can be decoded using an algorithm based on
Algorithm 6, and having complexity roughly the same as for
the case covered in Section V-Al.

3) Decoding Complexity: It should be clear that, given
h > 0, the described approaches are far more efficient than

any of the previously known methods for both odd- and even-
size alphabets. In the “best case,” where w = 2h, decoding
requires the solution of v- 1 pairs of simultaneous congruences
(involving numbers of size at most cv) and 21 decodings of the
trivial sequence; hence the complexity of decoding is O(w2),
i.e., it is polynomial in the span of the de Bruijn sequence.

B. Future Work

We conclude by briefly noting two areas for further work.
Similar constructions to those described can be used to
recursively construct Perfect Factors in the de Bruijn
graph, with corresponding simple decoding algorithms.
Perfect Factors have previously been studied because of
their importance in constructing Perfect Maps, see, for
example [12]-[15], and readily decoded Perfect Factors
will enable the construction of Perfect Maps with simpler
decoding algorithms (see [161).
Decoding cycles with large odd window length is still
nontrivial, and further refinement of existing techniques
(possibly combined with new techniques) remains a de-
sirable goal.

ACKNOWLEDGMENT

The authors wish to thank an anonymous referee for point-
ing out that, in an unpublished paper, H. Fredricksen has
shown how to decode the “prefer ones,” “prefer sames,”
and “lexicographic composition” de Bruijn sequences using
techniques like the milestone results of Petriu.

REFERENCES

111

PI

131

141

[51

[cl

[71

[81

PI

1101

1111

WI

u31

u41

[151

D61

N. de Bruijn, “A combinatorial problem,” Proc. Nederlandse Akademie
van Wetenschappen, vol. 49, pp. 758-764, 1946.
H. Fredricksen, “A survey of full length nonlinear shift register cycle
algorithms,” SIAM Rev., vol. 24, pp. 195-221, 1982.
J. Bondy and U. Murty, Graph Theory with Applications. Amsterdam,
The Netherlands: Elsevier, 1976.
J. Burns and C. Mitchell, “Coding schemes for two-dimensional position
sensing,” in Cryptography and Coding ZZI, M. Ganley, Ed. Oxford,
UK: Oxford Univ. Press, 1993, pp. 31-66.
E. Petriu. “New oseudorandom/natural code conversion method,” Elec-
tron. Lat., vol. 54, pp. 1358-1359, 1988.
F. Chung, P. Diaconis, and R. Graham, “Universal cycles for combina-
torial structures,” Discr. Math., vol. 110, pp. 43-59, 1992.
S. Golomb, Shift Register Sequences. San Francisco, CA: Holden-Dav,
1967. ” I _
J. Massey and R. Liu, “Equivalence of nonlinear shift-registers,” IEEE
Trans. Z&m. Theory, vol. IT-lo, pp. 378-379, 1964. -
A. Odlvzko, “Discrete logarithms in finite fields and their crvotograohic
significance,” in Advanck in Cryptology: Proc. EUROCR%‘T’8~, T.
Beth, N. Cot, and I. Ingemarsson, Eds. Berlin, Germany: Springer-
Verlag, 1985, pp. 224-314.
A. Lempel, “On a homomorphism of the de Bruijn graph and its
application to the design of feedback shift registers,” IEEE Trans.
ddmput., vol. C-19, pp.-1204-1209, 1970. -
K. Paterson and M. Robshaw, “Storage efficient ,decoding for a class of
binary de Bruijn sequences,” Discr. Math., vol. 138, pp. 327-341, 1995.
K. Paterson, “Perfect factors in the de Bruijn graph,” Des., Codes
Cryptogr., vol. 5, pp. 115-138, 1995.
T. Etzion, “Constructions for perfect maps and pseudo-random arrays,”
IEEE Trans. Inform. Theory, vol. 34, pp. 1308-1316, 1988.
C. Mitchell, “Constructing c-ary perfect factors,” Des., Codes Cryptogr.,
vol. 4, pp. 341-368, 1994.
-9 “New c-ary perfect factors in the de Bruijn graph,” in Codes
and Cyphers (Proc. 4th IMA Conf. on Cryptography and Coding,
Cirencester, UK, Dec. 1993), P. Farrell, Ed. Southend, UK: Formara
Ltd., 1995, pp. 299-313.
C. Mitchell and K. Paterson, “Decoding perfect maps,” Des., Codes
Cryptogr., vol. 4, pp. 11-30, 1994.

