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A Method for Constructing 
Decodable de Bruijn Sequences 

Chris J. Mitchell, Member IEEE, Tuvi Etzion, Member IEEE, and Kenneth G. Paterson 

Abstract-In this paper we present two related methods of 
construction for de Bruijn sequences, both based on interleaving 
“smaller” de Bruijn sequences. Sequences obtained using these 
construction methods have the advantage that they can be “de- 
coded” very efficiently, i.e., the position within the sequence of 
any particular “window” can be found very simply. Sequences 
with simple decoding algorithms are of considerable practical 
importance in position location applications. 

Index Terms-Decoding, de Bruijn graph, window sequence, 
de Bruijn sequence. 

I. INTRODUCTION 

A. De Bruijn Sequences and the Decoding Problem 

D E BRUIJN SEQUENCES, i.e., periodic sequences with 
elements taken from a finite alphabet in which every 

possible v-tuple of elements appears precisely once in a period 
(for some v), have been well studied for many years, see, for 
example, [l], [2]. Many constructions are known, and a useful 
survey has been given by Fredricksen [2]. 

However, the decoding problem, i.e., the problem, of dis- 
covering the position within a particular sequence of any 
specified v-tuple, has been much less well studied. This is 
notwithstanding the fact that for certain well-known practical 
applications of de Bruijn sequences, including their use for 
position location (see, for example, [3]-[5]), the decoding 
problem is an important one. Over and above its practical 
significance, the decoding problem has been listed by Chung, 
Diaconis, and Graham [6] as one of the “fundamental ques- 
tions” for the study of de Bruijn sequences. 

Previous work on the decoding problem can be summarized 
as follows. 

l The obvious approach is the “brute-force” method of 
storing a lookup table of the positions in the sequence 
of all possible w-tuples. Alternatively, successive states 
of the sequence can be generated until the desired v-tuple 
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is found. These methods are too inefficient for use with 
anything except relatively short sequences. 
A “milestone” approach to the decoding of the de Bruijn 
sequences derived from m-sequences can be derived from 
the work of Petriu [5]. The idea is a simple development 
of the brute-force approach of stepping a linear feedback 
shift register, equipped with feedbacks which generate the 
m-sequence, through all possible states until the desired 
tuple is obtained. The milestone idea is to store every nth 
shift register state (i.e., every nth tuple in the sequence) 
for some n; these form the milestone values. A particular 
v-tuple to be “decoded” is then used to define the initial 
state of the register, which is stepped until a stored 
value is obtained. This approach does not reduce the 
computational complexity of decoding below the brute- 
force value; it is simply a time/space tradeoff (albeit not 
without practical merit for relatively small values of w). 
Another decoding method also applies to the de Bruijn 
sequences derived from binary m-sequences. Consider 
the successive states of a v-stage “Galois” feedback 
register, equipped with feedbacks corresponding to a 
primitive polynomial. It is a well-established fact (see, 
for example, [7]) that, if these states (binary v-tuples) are 
regarded as binary vectors with respect to an appropriate 
basis, then the successive states are simply successive 
powers of a primitive element in the finite field GF (2”) 
when regarded as a v-dimensional vector space over 
GF(2). Hence finding the position of any given state in 
this sequence of states is precisely equivalent to finding 
discrete logarithms in this field. 

Massey and Liu [8] showed that there always exists a 
linear transformation mapping the sequence of states of a 
Galois register into the corresponding sequence of states 
of a “conventional” feedback register. This means that 
the decoding problem for m-sequences (and de Bruijn 
sequences derived from them) is equivalent to the dis- 
crete logarithm problem over GF (2”). Although finding 
discrete logarithms is nontrivial, algorithms considerably 
more efficient than the brute-force approach are known; 
see, for example, [9]. 
The only other method known to the authors applies to 
a different class of de Bruijn sequences; namely, those 
derived by repeated application of the inverse of Lempel’s 
homomorphism [lo]. Paterson and Robshaw [l l] have 
shown that such sequences can be decoded recursively. 
Although this technique achieves a time/space tradeoff, 
its overall complexity remains essentially the same as the 
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brute-force methods, unless some information is already 
available about the approximate location of the v-tuple in 
the sequence. 

It should be clear that all the existing approaches have 
significant limitations; even the discrete logarithm method is 
computationally complex, and is nontrivial to implement. 

In this paper we present two related methods of construction 
for de Bruijn sequences. We also describe algorithms which 
can be used to decode these sequences much more efficiently 
than any of the previously known techniques. 

B. Preliminary Dejinitions and Notation 

We first set up some notation which we will use throughout 
the paper. 

We are concerned here with c-ary periodic sequences, where 
by the term c-ary we mean sequences whose elements are 
drawn from the set (0, 1, . . , c - 1). We refer throughout to 
c-ary cycles of period n, by which we mean periodic sequences 
(so, CSl,. ‘. ,s,-1) where s; E {O,l,...,c - 1) for every 
i, (0 < i <n). 

If t = (ta,tr,. . . , t,-I) is a c-ary v-tuple (i.e., ti E 
(0, 1, ... , c - l} for every i, (0 5 i < w)), and s = (SO, 
sr,...,s,-1) is a c-ary cycle of period n (n 2 II); then we 
say that t occurs in s at position j if and only if 

t; = si+J 

for every i, (0 5 i < v), where i + j is computed modulo n. 
Throughout we will write Oi for the i-tuple of all zeros and 

li for the i-tuple of all ones. 
If s = (se, ~1,. . , s,-1) is a c-ary cycle of period n, then 

we say that s is a u-window sequence if no c-ary v-tuple occurs 
in s in two distinct positions within a period of s. Equivalently, 
s contains n distinct v-tuples in a period of the cycle. A c- 
ary de Bruijn sequence of span v is then simply a v-window 
sequence of period equal to c”; equivalently, every possible 
c-ary v-tuple occurs precisely once in a period of a de Bruijn 
sequence. 

A c-ary punctured de Bruijn sequence of span u (sometimes 
called a pseudorandom sequence) is a u-window sequence in 
which every c-ary v-tuple except for 0” occurs, and so a 
punctured de Bruijn sequence has period c” - 1. A span-v 
de Bruijn sequence can be “punctured” by deleting one of 
the zeros in O”, and a punctured de Bruijn sequence can be 
transformed into a de Bruijn sequence by adding a zero to 
any one of the c - 1 occurrences of O”-r. Similarly, a c-ary 
doubly punctured de Bruijn sequence of span u is a v-window 
sequence in which every c-ary v-tuple occurs except for 0” 
and l”, and hence a doubly punctured de Bruijn sequence has 
period cV - 2. A de Bruijn sequence can be “doubly punctured” 
by first puncturing it and then deleting one of the ones in l”, 
and a doubly punctured de Bruijn sequence can be transformed 
into a de Bruijn sequence by adding a zero to any of the c - 1 
occurrences of Ov--l, and adding a one to any of the c - 1 
occurrences of l”-r . 

If s = (so, ~1, . . , s,-1) and t = (to, tl, . . . , t,-1) are two 
cycles of the same length, n say, then the interleaving of these 
cycles, denoted Z(s, t), is defined to be the following cycle of 

length 2n: 

11. AN INTERLEAVING CONSTRUCTION 
FOR WINDOW SEQUENCES 

We now present a method for constructing a c-ary cycle 
with the window property. 

A. The Construction Method 

Before describing the method of construction we need the 
following definition. 

Definition 1: If a is a c-ary v-window sequence of period 
n, then a is said to satisfy Condition A if and only if the 
following three conditions are met: 

l n is even, 
l a  does not contain the all-zero w-tuple, and 
l a contains O”-l at position 0 (it may contain other 

occurrences of OV--l). 
Construction 2: Suppose n, c, w are positive integers (c 2 

2). Moreover, suppose that a = (au, al . . . , a,-~) is a c-ary 
v-window sequence of period n satisfying Condition A. 

Let b be the cycle of period n + 2 obtained from a by 
inserting two extra zeros at the start of the cycle; this has the 
effect of replacing O”-l at position 0 with 02’+l. (Observe that 
6 is “almost” a u-window sequence, with the single exception 
that 0” occurs twice in consecutive positions-this fact is of 
key importance to the construction method). 

Now let 

where, as throughout, as denotes the cycle obtained by con- 
catenating s copies of cycle a. 

We can now state and prove the following result. 
Theorem 3: Suppose n, c, v and a satisfy the conditions of 

Construction 2. If d is constructed from a using Construction 
2 then d is a 2u-window sequence of period n(n + 2) which 
satisfies Condition A. 

Proof If 0 5 i < n, let ai be the w-tuple occurring in 
a at position i; similarly, if 0 2 j < n + 2, let bj be the v- 
tuple occurring in b at position j. Then the 2w-tuples of d are 
precisely 

1@2i,a2j) 0 5 i I n/2, 0 5 j < n/2 - 1 

@2;+1, a2j+l) 0 I i 5 71/T 0 5 j 5 ,n/2 - 1 

Z(azi,baj+l) 0 I i I 42 - 1, 0 5 j 5 n/2 

Z(azi+l,bzj) 0 I i In/2 - 1, 0 < j < n/2. 

All tuples of this form occur exactly once in d, because 
(n,n + 2) = 2. 

Next observe that each of the above four classes consists 
of n/2(n/2 + 1) distinct 2v-tuples, and the four classes are 
pairwise-disjoint. This latter point follows because the set of 
tuples {aai} is precisely the same as the set of tuples {bzi} 
(with the exception of 0”), and the set of tuples {aai+r} is 
precisely the same as the set of tuples {&+r } (again with the 
exception of 0”). Hence d is a 2v-window sequence. 
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It remains for us to show that d satisfies Condition A. First 
observe that d has period n(n + 2) which is even since n is 
even. Next observe that since a does not contain 0” it follows 
immediately that d cannot contain 02”. Finally, observe that, 
since Ov+r occurs at position 0 in b and Owe1 occurs at 
position 0 in a, then 02v-1 occurs at position 0 in d. The 
result follows. 0 

B. Application of the Construction Method 

First observe that if c is odd then an example of a v-window 
sequence a of period cv - 1 satisfying Condition A can be 
obtained by taking an appropriate cyclic shift of a c-ary span 
w punctured de Bruijn sequence. The cycle d resulting from 
an application of Construction 2 to a will then have period 
(c” - l)(c” + 1) = c2v - 1, and will be a c-ary span 2w 
punctured de Bruijn sequence (enabling the construction to be 
applied recursively). 

The situation is not so convenient in the case where c is 
even (which obviously includes the binary case), where the 
best that can be done is to note that an appropriately shifted 
c-ary span u doubly punctured de Bruijn sequence (of period 
cw - 2) is an example of a sequence satisfying Condition A. 
We will address this case in Sections III and IV below. 

C. Example 

Before proceeding we consider two simple examples of the 
construction method. 

Example 4: Let n = 6, c = 2, and v = 3. Let a be the 
following cycle: 

(0 0 1 0 1 1). 

Note that a is a 2-ary span 3 doubly punctured de Bruijn 
sequence. The cycle b is as follows: 

(0 0 0 0 1 0 1 1). 

We then have 
d =Z(b3,a4) 

=(O 0 0 0 0 10 0 110 110 1 

and ani2+l is 

(0 1 1 0 2 1 2 2 0 1 1 0 2 
122011021220 
110212201102 
1 2 2). 

Hence d is 

(0 0 01011012 012 2 
1220210100021 
1120220112120 
0201021210012 
1102221020200 
1111002211222 

2) 

and d is a 3-ary span 4 punctured de Bruijn sequence. 

D. A Decoding Algorithm 

We now present a simple algorithm for decoding cycles 
which have been derived using Construction 2. This algorithm 
makes use of a decoder for the cycle a used as input to the 
construction. 

Algorithm 6: Suppose n, c, v, and a satisfy the conditions 
of Construction 2, and that d has been constructed from a 
using this construction. Suppose also that the function E is a 
decoder for a, i.e., if 3: is some v-tuple occurring in a then 
0 5 E(z) < n and z occurs in a at position E(z). 

Define the function F:T --f {O,l, ... ,n(n + 2) - l} as 
follows, where T is the set of all c-at-y (2w)-tuples which 
occur in d. First suppose x E T, and let 

x = Z(y,z). 

Let m be the unique solution (mod n(n + 2)/2) to the 
simultaneous congruences 

00100010110001 
C 

E(z), if y = 0” or E(z) - E(y) is even 
m = E(Y), 

mod n 
11001010000110 
0 1 1 1 1). 

d is a binary 6-window sequence of period 48. 

if z = 0” or E(z) - E(y) is odd 
Oor 1, if y=O” 
n+lorO, if z=O” 

m E E(y) + 2, if E(z) - E(y) is even modnf2 

Example 5: Let n = 8, c = 3, and Y = 2. Let a be the 
following cycle: 

(0 1 1 0 2 1 2 \ 21. , 
Note that a is a 3-ary span 2 punctured de Bruijn sequence. 

The cycle b is as follows: 

\ E(z) + 1, if E(z) - E(y) is odd. 

Then let 

2m, if y = 0” or E(z) -E(y) is even 
2m+l, if z=O” or E(z)-E(y) is odd 

(0 0 0 1 1 0 2 1 2 2). 

Then b”/2 is 
(0 0 0 1 10 2 1 2 2 0 0 0 

110212200011 
021220001102 

1 2 2) 

Theorem 7: If n, c, v, d and F are defined as in Algorithm 
6, then F is a decoder for d. 

Proof It should be immediately clear that every c- 
ary (2v)-tuple will be covered by one of the four “cases” 
of the algorithm. We now consider each case in turn. We 
suppose throughout that x occurs at position p in d, where 
0 5 p < n(n + 2) (we know that p is well-defined by Theorem 
3). 
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If y = 0” then y must occur in b, and hence x occurs at an 
even position in d, i.e., p = 2q for some integer q. Thus given 
that 0” occurs at positions 0 and 1 in b, we have that 

q=Oorl (modn+2). 

Now z occurs at position E(z) in a and hence 

q z E(z) (modn). 

Given that p is well-defined, F must be well-defined, and 
the correctness of the first case is established. 

If z = 0” then z must occur in b, and hence p is odd, say 
p = 2q + 1 for some integer q. Thus given that 0” occurs at 
positions 0 and 1 in b, we have that 

p=22n+3orl (mod2(n+2)) 

and hence 

q+l=Oorl (modn+2). 

In addition, y occurs at position E(y) in a, and hence 

p E 2E(y) + 1 (modan) 

and so 

q = E(y) (modn). 

As before, given that p is well-defined, F must be well- 
defined, and the correctness of the second case is established. 

If y and z are both nonzero, then either 
a) p is even, p = 2q say, y occurs in b at position E(y) + 2 

and z occurs in a at position E(z), or 
b) p is odd, p = 2q + 1 say, z occurs in b at position 

E(z) + 2 and y occurs in a at position E(y). 
In case a) we have 

q--E(y)+2 (modn+2) 

and 

q - E(z) (modn). 

In case b) we have 

p z 2E(z) + 3 (mod 2(n + 2)) 

i.e., 

q+l=E(z)+2 (modn+2) 

and 

p E 2E(y) (mod2n) 

i.e., 

q = E(y) (modn). 

The above discussion covers the final two cases, and the 
result follows. 0 

E. Complexity of Decoding 

We now consider the complexity of the decoding method of 
Algorithm 6, when applied to a c-ary (2v)-window sequence 
d constructed from a c-ary u-window sequence a of period n 
using the technique of Construction 2. 

Suppose it takes e arithmetic operations to find the position 
of a c-ary v-tuple in a. Then it is not difficult to see that 
the number of arithmetic operations involved in decoding a 
single c-ary v-tuple is bounded above by 2e + EA (n) + 
k, where EA (n) is the number of operations required to 
find the unique solution (modulo n(n + 2)/2) to a pair of 
simultaneous congruences (modulo n and n + 2), and k is a 
small constant. Solving a pair of simultaneous congruences 
can be achieved using the well-known (and simple) Euclidean 
Algorithm. 

III. A RELATED CONSTRUCTION 
METHOD FOR WINDOW SEQUENCES 

We now present a second method for constructing a c-ary 
cycle with the window property. This method is a variant of the 
method presented in the previous section-it has advantages 
for cycles with even-size alphabets. 

A. The Construction Method 

Before describing the method of construction we need the 
following definition. 

Dejinition 8: If a is a c-ary u-window sequence of period 
n, then a is said to satisfy Condition B if and only if the 
following three conditions are met: 

l 2 1 n and 4 + n, 
l a does not contain 0” or l”, and 
l a does contain at least one occurrence of O”-l and at 

least one occurrence of l”-l. 
Construction 9: Suppose 72, c, 21 are positive integers (c > 

2). Moreover, suppose that a = (au, al . . . , a,-~) is a c-ary 
v-window sequence of period n satisfying Condition B. Let 
b be a cycle of period n + 4 obtained from a by replacing 
an occurrence of .O”-l with Ov+’ and an occurrence of l”-i 
with IV+‘. Observe that b is “almost” a w-window sequence, 
with the two exceptions that 0” and 1” both occur twice in 
consecutive positions-this fact is of key importance to the 
construction method. 

Now let 

d’ = Z(b”12, &2+2). 

Finally, derive d from d’ by inserting a zero followed by a 
one after one of the (2~ - 1)-tuples equal to Z(l”-l, OV-i) 
followed by a one, in order to make it into a (2~ + l)-tuple 
equal to 2(1”, 0”) followed by a one. 

We can now state and prove the following result. 
Theorem 10: Suppose n, c, u, and o satisfy the conditions 

of Construction 9. If d is constructed from a using Construc- 
tion 9 then d is a (2v)window sequence of period n(nS4) + 2 
which satisfies Condition B. 
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Proof The proof that this construction works is almost 
identical to that of Theorem 7. Using the same argument as 
given in that proof, it is straightforward to see that d’ is ‘a 
2v-window sequence. We therefore need only establish that 

l the derivation of d from d’ is well-defined, 
l d is a 2v-window sequence, and 
l d satisfies Condition B. 
The first point follows from the observation that, since a 

contains O”-l, and b contains lv+l, then d must contain 
the (2~ - 1)-tuple: Z(l”-l, Ov-‘) followed by a one. To 
establish the second point we note that the two “extra” 2v- 
tuples which d contains are X(1”, 0”) and Z(O”, 1”). Since 
a does not contain 0” or l”, then neither of these 2w-tuples 
occurs in d’. Hence, since d’ is a 2v-window sequence then 
so is d. 

Finally, we need to show that d satisfies Condition B. First 
note that d has period n(n + 4) + 2, which, since 2 1 n, satisfies 
21n(n+4)+2 and 4 + n(n+4)+2. Secondly, since a does not 
contain 0” or l”, then d does not contain 02” or 12”. Third, 
d contains at least one occurrence of 02V-1 and at least one 
occurrence of 12V-1 by an exactly analogous argument to that 
used to show that d’ contains an alternating (2~ - l)-tuple. 

The result now follows. 0 

B. Application of the Construction Method 

Analogously to Section III-B, if c is even then an example 
of a u-window sequence a of period c” - 2 satisfying Condition 
B can be obtained by taking a c-ary span w doubly punctured 
de Bruijn sequence. The cycle d resulting from the application 
of Construction 9 to a will have period (c” - 2)(c? + 2) + 2 = 
c2u -2 and will also be a doubly punctured de Bruijn sequence 7 
(since it satisfies Condition B and has period c2V - 2), thus 
enabling the construction to be applied recursively. 

Hence Constructions 2 and 9 provide a pair of methods 
for recursively generating de Bruijn sequences for all alphabet 
sizes; both methods double the window length at each iteration. 
For the odd-size alphabet case we have already seen how 
a computationally very simple decoder for a double-length 
window sequence can be derived from a decoder for the single- 
length window sequence used to construct it. In the sequel, we 
will demonstrate a corresponding simple recursive decoder for 
the even-size alphabet case. 

C. Example 

Before proceeding we consider a simple example of the 
construction method (and how the cycle produced can be made 
into a de Bruijn sequence). 

’ Example 11: Let n = 6, c = 2, and v = 3. Let a be the 
following cycle: 

(0 0 1 0 1 1). 

Note that a is a 2-ary span 3 doubly punctured de Bruijn 
sequence. The cycle b is as follows: 

(0 0 0 0 1 0 1 1 1 1). 

We then have 

d’ =Z(b3, a5) 

=(O 0 0 0 0 10 0 1 10 1 
10101110010 
10000110011 
11101001000 
10110001110 
1 1 1 1). 

d’ is a binary 6-window sequence of period 60, and the only 
6-tuples missing are 

and 

(0 0 0 0 0 0) 
(1 1 1 1 1 1) 
(0 1 0 1 0 1) 

(1 0 1 0 1 0). 

The sequence d is obtained from d’ by inserting an extra zero 
and one following the tuple “10101.” Underlining the inserted 
bits, we obtain 

d=(O 0 0 0 0 1 0 0 1 1 0 1 1 0 
101Qtl11001010 
0001100111110 
1001000101100 
0 1 1 1 0 1 1 1 1) 

which is a binary, span 6, doubly punctured de Bruijn se- 
quence. To make d into a de Bruijn sequence we insert an 
extra zero and one to make the (unique) all-zero and all-one 
5-tuples into 6-tuples, yielding the following binary de Bruijn 
sequence of period 64 (the two added bits are underlined): 

(0 0 0 0 0010 0110110 
10101110010100 
00110011111~01 
00100010110001 
1 1 0 1 1 1 1). 

D. A Decoding Algorithm 

We next present a simple algorithm for decoding cycles 
which have been derived using Construction 9; this decoding 
method is very similar to that presented in Algorithm 6 above. 
As with that algorithm, use is made of a decoder for the cycle 
u used as input to the construction. 

Algorithm 12: Suppose n, c, TJ, and a satisfy the conditions 
of Construction 9, and that d has been constructed from a 
using this construction. Suppose also that the function E is a 
decoder for a, i.e., if x is some w-tuple occurring in a then 
0 5 E(s) < n and x occurs in a at position E(x). Similarly, 
suppose that the function E’ is a decoder for b (defined only 
for the tuples which occur in a, and hence E’ is well-defined). 

Suppose also that the particular occurrences of O”-l and 
l”-l which are modified in deriving b from a, occur at 



MITCHELL et al.: A METHOD FOR CONSTRUCTING DECODABLE DE BRUIJN SEQUENCES 1471 

positions s and s’ in a, respectively. Suppose also, without loss 
of generality, that s < s’. Finally, suppose that the (2~ - l)- 
tuple of alternating zeros and ones, which is augmented to 
obtain d from d’, occurs at position t in d’. 

Define the functions F’: T’ 4 (0, 1, . . . , n(n + 2) - l} and 
F:T --+ (0, l,... , n(n + 2) + l} as follows, where T is the 
set of all c-at-y (2v)-tuples which occur in d and T’ is the 
set of all c-ary (2v)-tuples which occur in d’. First suppose 
z E T’, and let 

E. Complexity of Decoding 

x = Z(y,z). 

We complete this section by briefly considering the com- 
plexity of the decoding method of Algorithm 12, when applied 
to a c-ary (2v)-window sequence d constructed from a c- 
ary u-window sequence a of period n using the technique 
of Construction 9. It should be clear that, because of the 
great similarity between the two algorithms, the complexity of 
Algorithm 12 is approximately the same as that of Algorithm 
6, with the exception that, for each iteration, there is a need 
to store the values of s, s’, and t. 

Let m be the unique solution (modn(n + 4)/2) to the 
simultaneous congruences 

I E(z) > if y= 0” or y = 1” or 
E(z) - E(y) is even 

if z= 0” or z = 1” or (mod n) 

E(z) - E(y) is odd 

I s or s+l, if y=O” 
s’ + 2 or s’ + 3, if y = 1” 

if z = 0” 

Hence, if it takes e arithmetic operations to find the posi- 
tion of a c-ary v-tuple in a, then the number of arithmetic 
operations involved in decoding a single c-ary v-tuple is 
bounded above by 2e + EA’(n) + k’, where EA’(n) is the 
number of operations required to find the unique solution 
(modulon(n + 4)/2) to a pair of simultaneous congruences 
(modulon and n + 4), and Ic’ is a small constant. Storage 
space is also required for the three values s, s’, and t. 

IV. ANALTERNATIVEAPPROACHFOREVEN-SIZE ALPHABETS 

m = E’(y), I 
s-l or s, 
s’+ 1 or s’+ 2, if z = 1” 

if E(z) -E(y) 
(mod n + 4) 

is even 
E’(E) - 1, if E(a) - E(y) 

is odd. 

Then let 

2m, if y = 0” or y = 1” or 

F’(x) = 
E(a) - E(y) is even 

zrn + 1 , if a = 0” or z = 1” or 
E(t) - E(y) is odd. 

Finally, if x E T, let 

if xcT’ and F’(x)<t 
if x = Z(l”, 0”) 
if x = 2(0”, 1”) 

F’(xj+2, if XE T’ and F’(x) > t. 

Remark 13: It is important to note that the function El can 
very simply be derived from E as follows. Suppose x is a u- 
tuple occurring in a. Suppose also that s and s’ are as defined 
in Algorithm 12 (and s < s’). Then 

l if 0 5 E(x) < s then E’(x) = E(x), 
l if s <E(x) 5 s’ then E’(z) = E(x) + 2, and 
l if s’ <E(x) < n then E’(x) = E(x) + 4. 
Theorem 14: If n, c, u, d, and F are defined as in Algorithm 

12, then F is a decoder for d. 
Pro08 Rather than go through the proof in great detail 

we observe that it follows using a very similar argument to 
that used to establish Theorem 7. It should be immediately 
clear that every c-ary (2v)-tuple will be covered by one of 
the six ‘cases’ of the algorithm. The six individual cases then 
follow using exactly analogous arguments to those employed 
to deal with the four cases in the proof of Theorem 7. The 
change from F’ to F is necessary to “correct” for the addition 
of the extra 0 and 1 to derive d from d’. 0 

Because Construction 2 only enabled the recursive con- 
struction of de Bruijn sequences with odd-size alphabets, 
Construction 9 was devised to deal with the even-size alphabet 
case. However, an alternative approach exists for recursively 
constructing de Bruijn sequences with even-size alphabets 
using Construction 2 directly. We sketch that approach here. 

Suppose c > 1 is even and a is a c-ary span v de Bruijn 
sequence which ends with 1” and begins with 0” (there are 
always such de Bruijn sequences-for example, the “prefer 
ones” sequence [2]). By deleting a zero from 0” and a one 
from 1” we obtain a doubly punctured de Bruijn sequence u’ 
with the property that the sequence ends with l”-l and begins 
with O”-l; we call this Property C. 

We give a method involving Construction 2 which produces 
a new doubly punctured de Bruijn sequence also having 
Property C, and thus the method can be iterated. 

We first apply Construction 2 to u’ to obtain a sequence 
d of period c2v - 2~‘“. The following properties of d are a 
consequence of Theorem 3 and the construction method. 

1) d is a 2v-window sequence. 
2) d begins with Ozv-l and ends with 12v-2. 
3) d contains all 2v-tuples, except for 02” and the tuples 

Z(w, 1”) and Z( 1’“) w), where w is an arbitrary w-tuple. 
Now let e denote the sequence obtained from a by deleting 

a one from 1” and shifting the resulting sequence right by 
(v - 1) places. Thus e has period c” - 1 and begins with l”-l 
followed by a zero. Let 

f = T(e, lcU-l). 

“conjugate” of the first 2v-tuple of f) at position cZv - 

Then f has period 2~” - 2 and begins with the 2v-tuple 12v-2 
followed by a zero and a one. 

It is easily checked that, for each w # l”, f contains as 2v- 
tuples both Z(w, 1”) and 2(1”, w), neither of which occurs in 
d. 

From Property 2 above, d contains an occurrence of the 
2v-tuple made up of 1 2v-2 followed by two zeros (i.e.’ the 
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2c” - 2v + 2. Hence f can be joined into d at position 
c2v - 2~” - 2v + 2 using Lempel’s cycle joining method [lo]. 
We obtain a new sequence d’ which is a doubly punctured de 
Bruijn sequence satisfying Condition C. 

It is not difficult to see how the decoding of d’ can be re- 
duced to the decoding of a’. We leave the details to the reader, 
noting only that the complexity of the resulting decoding 
algorithm is marginally greater than that of Algorithm 6. 

V. SUMMARY AND CONCLUSIONS 

A. Decoding Long de Bruijn Sequences 

We now briefly consider how de Bruijn sequences can be 
recursively constructed using Constructions 2 and 9, and, in 
addition, how they can be recursively decoded. Suppose we 
wish to construct and subsequently decode a span u de Bruijn 
sequence over a c-ary alphabet. Suppose also that ‘u = 2hv’, 
where u’ is odd. 

1) Odd-Size Alphabets: We start by considering use of 
Construction 2, and hence suppose c is odd. First construct, 
by some means, a c-at-y span 2)’ de Bruijn sequence a’. In 
addition, a decoding algorithm needs to be provided for this 
cycle. Note that if c is composite then, using a special case of 
[12, Lemma 5.11, a c-at-y span w’ cycle can be constructed by 
combining span 21’ cycles over alphabets of sizes equal to the 
prime factors of c, and decoding the combined cycle can be 
reduced to decoding the component cycles. 

Next derive a punctured de Bruijn sequence a from a’ 
by deleting a single zero from 0”‘. We can now recursively 
apply Construction 2 h times to a, obtaining a punctured de 
Bruijn sequence after each iteration. The final output will be 
a punctured c-ary de Bruijn sequence of span u = 2h~‘. This 
cycle can then be decoded by recursively applying Algorithm 
6 h times, which (by the discussion in Section III-E) will 
involve at most 2h decodings of the span u’ cycle a, together 
with the solution to 2h - 1 pairs of simultaneous congruences. 

2) Even-Size Alphabets: We next consider use of Construc- 
tion 9, and hence suppose c is even. As previously, construct, 
by some means, a c-ary span ‘u’ de Bruijn sequence a’ with a 
decoding method. Again as previously, if c is composite then 
the methods of [12] can be used to simplify the decoding of 
the span v’ cycle. 

Next derive a doubly punctured de Bruijn sequence a from 
a’ by deleting a single zero from 0”’ and a single one from 1”‘. 
We can now recursively apply Construction 9 h times to a. 

The final output will be a doubly punctured c-ary de Bruijn 
sequence of span u = 2hv’. This cycle can then be decoded 
by recursively applying Algorithm 12 h times, which (by the 
discussion in Section III-E) will involve at most 2h decodings 
of the span II’ cycle a, together with the solution to 2h - 1 pairs 
of simultaneous congruences and the storage of 3h values. 

Alternatively, the approach of Section IV can be used 
to produce a doubly punctured de Bruijn sequence of span 
2hv’. This cycle can be decoded using an algorithm based on 
Algorithm 6, and having complexity roughly the same as for 
the case covered in Section V-Al. 

3) Decoding Complexity: It should be clear that, given 
h > 0, the described approaches are far more efficient than 

any of the previously known methods for both odd- and even- 
size alphabets. In the “best case,” where w = 2h, decoding 
requires the solution of v- 1 pairs of simultaneous congruences 
(involving numbers of size at most cv) and 21 decodings of the 
trivial sequence; hence the complexity of decoding is O(w2), 
i.e., it is polynomial in the span of the de Bruijn sequence. 

B. Future Work 

We conclude by briefly noting two areas for further work. 
Similar constructions to those described can be used to 
recursively construct Perfect Factors in the de Bruijn 
graph, with corresponding simple decoding algorithms. 
Perfect Factors have previously been studied because of 
their importance in constructing Perfect Maps, see, for 
example [12]-[15], and readily decoded Perfect Factors 
will enable the construction of Perfect Maps with simpler 
decoding algorithms (see [ 161). 
Decoding cycles with large odd window length is still 
nontrivial, and further refinement of existing techniques 
(possibly combined with new techniques) remains a de- 
sirable goal. 
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