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The paper establishes a connection between the theory of permutation polyno-
mials and the question of whether a de Bruijn sequence over a general finite field
of a given linear complexity exists. The connection is used both to construct span
1 de Bruijn sequences (permutations) of a range of linear complexities and to prove
non-existence results for arbitrary spans. Upper and lower bounds for the linear
complexity of a de Bruijn sequence of span n over a finite field are established.
Constructions are given to show that the upper bound is always tight, and that the
lower bound is also tight in many cases. � 1996 Academic Press, Inc.

1. INTRODUCTION

A periodic sequence s over Fpm , the finite field with pm elements, is called
a span n de Bruijn sequence if each n-tuple of elements of Fp m appears
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exactly once as a window of n consecutive terms in a period of the
sequence. De Bruijn sequences correspond to Hamiltonian cycles in the de
Bruijn graph [1, 5]. These graphs and sequences have been extensively
studied because of their wide applications, e.g. [3, 6, 12, 13] and their com-
binatorial interest [5, 10].

One of the most important measures of the complexity of a sequence is
its linear complexity, this being the degree of the shortest linear recurrence
which generates the sequence (see Section 2 for a formal definition). While
the linear complexity of binary de Bruijn sequences has been thoroughly
investigated [4, 7, 8, 9, 11], almost no work has been done on the linear
complexities of de Bruijn sequences over general finite fields. In this paper
we consider the linear complexities of such sequences. We find that both
the results concerning linear complexities of de Bruijn sequences over
general finite fields and the techniques required to prove them differ
markedly from the binary case.

Our paper is organised as follows. Section 2 establishes our notation and
a number of basic results that will be needed in the sequel. We also con-
sider the enumeration of periodic sequences over Fp m with specified com-
plexities and give some computational results on the distribution of the
linear complexity of de Bruijn sequences. In Section 3, we develop the con-
nection between the linear complexity of sequences and the degrees of per-
mutation polynomials and apply it to the study of permutations of Fp m ,
these being equivalent to span 1 de Bruijn sequences. We are able to prove
a non-existence result for permutations (Corollary 12), which we may state
as follows. Suppose k is a positive integer dividing p&1. If m=1, assume
that k>1. Then there exists no permutation of Fpm of linear complexity
1+k �m&1

i=0 pi. In contrast, we show that, for fields of characteristic 2, 3
and 5, permutations of all linear complexities between our upper and
lower bounds do occur, provided their existence is not ruled out by
Corollary 12.

In Section 4 we turn to the study of general span de Bruijn sequences
over Fp m , again using the link to permutation polynomials to obtain both
a powerful non-existence result (Corollary 19) and upper and lower bounds
on the linear complexity of such a sequence. Our bounds generalise the
results of [4]. We show that the upper bound is always attained, but that
the lower bound is not tight in every case. In particular for span 2 sequen-
ces over prime fields, our bound is never achieved. We present an improved
lower bound for this case and prove its tightness. On the other hand, we
show by construction that, for span 2 sequences over Fpm , m�2 and for
some higher spans over non-prime fields of small characteristic, our lower
bound is tight. Thus there is a sharp difference in the behaviour of minimal
linear complexity of de Bruijn sequences over prime and non-prime fields.

Finally, in Section 5, we discuss some open questions and conjectures.
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2. BASIC RESULTS

In this section, we introduce some notation and develop a number of
basic results on the linear complexity of sequences. We also enumerate the
sequences over Fp m with period pk and a fixed linear complexity and the
de Bruijn sequences of small span over small fields.

Sequence s=..., s&1 , s0 , s1 , ... over Fpm is said to be periodic if there exists
non-zero integer t such that si=si+t for every i # Z. The period of s is
defined to be the least positive such t. We will write [s0 , s1 , ..., st&1] for the
sequence of period t with s0 , s1 , ..., st&1 as its first t terms. Thus [a]
denotes the constant sequence (of period 1) all of whose terms are a.

Definition 1. Sequence s over Fp m is a span n de Bruijn sequence over
Fp m if it has period pmn and the n-tuples

(si , si+1 , ..., si+n&1), 0�i< pmn

are distinct.

From the above definition, it is clear that every n-tuple over Fp m occurs
exactly once as n consecutive terms in a period of a de Bruijn sequence.

We define the action of the left shift operator E on sequences as follows.
Let s be an arbitrary sequence over Fp m . Then Es is defined to be the
sequence whose i th term is si+1 . For integer k, we can similarly define Eks
to be the sequence with i th term si+k .

We say that two sequences s and t are equivalent if Eks=t for some
integer k.

Suppose that for some elements c0 , c1 , ..., cn&1 # Fpm , the sequence s over
Fp m satisfies:

si+n+cn&1si+n&1+ } } } +c1 si+1+c0si=0 for all i # Z (1)

that is, a linear recurrence relation of degree n. We then have

(En+cn&1En&1+ } } } +c1E+c0) s=[0]

and we call the polynomial Xn+cn&1Xn&1+ } } } +c1 X+c0 a charac-
teristic polynomial of s.

If s has period t, then s satisfies

si+t&si=0, for all i # Z,

a linear recurrence of degree t with characteristic polynomial Xt&1, so any
periodic sequence satisfies a linear recurrence. We have the following result
and definition.
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Result 1 [14, Theorem 8.42, page 418]. Let s be a sequence of period
t. Then there exists a uniquely determined monic polynomial m (called the
minimal polynomial of s) having the following property: g is a characteristic
polynomial for s if and only if m divides g.

Definition 2. Suppose s is a periodic sequence over Fpm . Then the
linear complexity of s, denoted c(s), is the degree of the minimal polyno-
mial m of s.

Proposition 2. A sequence s has period pk for some k and linear com-
plexity c(s) if and only if the minimum polynomial of s is (X&1)c(s). Further,
if s is non-zero and has period pk, then

pk&1+1�c(s)�pk,

unless k=0, in which case c(s)=1.

Proof. Suppose s is a sequence of period pk over Fpm , with minimal
polynomial m. Then m(E) s is the all-zero sequence and from Result 1,
m divides X p k

&1. Over a field of characteristic p, we have X p k
&1=

(X&1) p k
since the binomial coefficients ( pk

i ) are zero for 1�i�pk&1.
Thus the minimal polynomial of s is simply (X&1)c(s) and s satisfies the
linear recurrence

(E&1)c(s) s=[0]. (2)

Conversely, if s satisfies (2), then

(E p k
&1) s=(E&1) pk&c(s) (E&1)c(s) s=[0]

for any k such that pk�c(s). Hence s has period a power of p. Now sup-
pose further that s{[0], so that s has minimum polynomial (X&1)c(s),
where c(s)�1. The case c(s)=1 is trivial, so we may in fact assume that
c(s)�2. Then there is a unique integer k such that pk&1+1�c(s)�pk.
Now

(E p k
&1) s=(E&1) pk s=(E&1) p k&c (E&1)c s=(E&1) pk&c [0]=[0]

while

(E p k&1
&1) s=(E&1) p k&1 s{[0],

for otherwise s would have linear complexity at most pk&1 ( from Result 1).
We deduce that s has period exactly pk. K

58 BLACKBURN, ETZION, AND PATERSON



File: 582A 270105 . By:BV . Date:26:08:96 . Time:15:50 LOP8M. V8.0. Page 01:01
Codes: 2533 Signs: 1510 . Length: 45 pic 0 pts, 190 mm

We define the weight of a sequence s of period t over Fp m to be the sum
s0+s1+ } } } +st&1. We have the following:

Result 3 [16, Corollary 2.6]. Let s be a sequence of period pk over Fp m .
Then c(s)=pk if and only if s has non-zero weight.

As a further deduction from Result 1 and Proposition 2, we note that if
the sequence s is non-zero, has period pk and has linear complexity c(s),
then the sequence (E&1) s has linear complexity c(s)&1. The following
lemma follows quickly from this and the characterisation of the sequences
of linear complexity 1 as the non-zero constant sequences:

Lemma 4. A non zero sequence s of period pk over Fp m has linear com-
plexity c if and only if there exists a non-zero a # Fp m such that

(E&1)c&1 s=[a]

is a constant sequence.

Finally in this section, we introduce the notion of the component
sequences of a sequence s over Fpm . We can represent each term si of such
a sequence by an m-tuple (s0

i , ..., sm&1
i ) of elements of Fp . We call the

sequence

s j=.. ., s j
&1 , s j

0 , s j
1 , . . .

component sequence j of s and we have the following result [16, Section 2]:

Result 5. With notation as above,

(E&1)c&1 s=[a], for some a{0

if and only if

(E&1)c&1 s j=[aj] for some a=(a0 , ..., am&1){(0, ..., 0).

Moreover, c(s)=max[c(s j ): 0�j�m&1].

2.1. Enumeration of Sequences with Specific Complexities

We are interested in counting the number of sequences over Fp m of
period a power of p and linear complexity c. Let N( pm, c) denote this
number. Of course, N( pm, 0)=1.

Lemma 6. Suppose c�1. Then

N( pm, c)=( pm&1) pmc&m.
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TABLE I

Inequivalent Span 1 de Bruijn Sequences over
F5 , F7 , F8 , F9 , and F11

Field
Linear

complexity F5 F7 F8 F9 F11

2 4 6 0 0 10
3 0 0 0 0 0
4 20 0 0 144 110
5 0 84 336 0 0
6 �� 630 672 432 0
7 �� 0 4032 3456 2640
8 �� �� 0 36288 24750
9 �� �� �� 0 302940

10 �� �� �� �� 3298350

Proof. Let c be such that c�1. Consider the set of sequences having
period a power of p and linear complexity at most c. It follows from
Proposition 2 that a sequence s is in this set if and only if (X&1)c is a
characteristic polynomial for s. Thus each of these sequences is uniquely
determined by its first c terms, using the recurrence relation (1). Hence
there are exactly pmc sequences in this set. So there are pmc&pm(c&1)=
( pm&1) pmc&m sequences of linear complexity exactly c and having period
a power of p. It follows that N( pm, c)=( pm&1) pmc&m. K

Corollary 7. Let k>0. For pk&1+1�c�pk, there are exactly
( pm&1) pmc&m&k inequivalent sequences with period pk and linear com-
plexity c.

We now turn to the enumeration of de Bruijn sequences with specific
linear complexities. We have exhaustively generated all de Bruijn sequences
of small spans over small fields and counted the number of inequivalent
sequences of each linear complexity. A backtracking method was used to

TABLE II

Inequivalent Span 2 de Bruijn
Sequences over F3

Linear Number of
complexity sequences

7 12
8 12
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TABLE III

Inequivalent Span 2 de Bruijn Sequences over F4

Linear Number of Linear Number of
complexity sequences complexity sequences

10 96 13 1200
11 144 14 3312
12 336 15 15648

generate sequences while the algorithm of [2] was used to calculate linear
complexities. Of course, from Proposition 2, the linear complexity of a span
n de Bruijn sequence over Fpm must lie between pmn&1+1 and pmn.

The distribution of de Bruijn sequences over F2 with span up to 6 can
be found in [4]. There are 2 inequivalent permutations of F3 , each of
linear complexity 2, and 6 inequivalent permutations of F4 , each of linear
complexity 3. Tables I to V contain the linear complexity distribution for
span 1 de Bruijn sequences over F5 , F7 , F8 , F9 and F11 , for span 2 de
Bruijn sequences over F3 , F4 and F5 and for span 3 de Bruijn sequences
over F3 . An occurence of `��' in Table I indicates a linear complexity ruled
out by Proposition 2. In the other tables, if no entry occurs for a particular
linear complexity, then there are no sequences of that complexity. The
tables suggest that the distribution of complexities of de Bruijn sequences
varies markedly from the distribution one might expect for random sequen-
ces. We will explain some of these variations below. In particular, we can
account for all the zeros that occur in Table I (see Section 3.4) as well as
the zeros that occur when c=13 or 14 (but, interestingly, not when c=12)
in Table IV��see Corollary 19.

TABLE IV

Inequivalent Span 2 de Bruijn Sequences over F5

Linear Number of Linear Number of
complexity sequences complexity sequences

11 240 18 54800
12 0 19 256360
13 0 20 1307520
14 0 21 6430280
15 760 22 31677520
16 1920 23 159523800
17 10080 24 796064720
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TABLE V

Inequivalent Span 3 de Bruijn Sequences over F3

Linear Number of Linear Number of
complexity sequences complexity sequences

17 48 22 3096
18 60 23 9240
19 60 24 29556
20 504 25 82920
21 1620 26 246144

Recall that we consider two de Bruijn sequences as being equivalent if
one is a shift of the other. In the context of linear complexity, we can con-
sider other equivalences. Two non-zero sequences s=[s0 , ..., sl&1] and t=
[t0 , ..., tl&1] over Fpm certainly have the same linear complexity if either
si=ti+d for some d # Fpm and for all i, or si=dti for some d # Fpm "[0] and
for all i, or if si=t&i for all i. These sequences could also be considered
equivalent, and divisibility properties of the numbers appearing in Tables
I to V can be derived from this notion of equivalence.

3. PERMUTATION POLYNOMIALS

In this section, we construct a bijection between sequences over Fp of
period dividing pk and a certain collection of polynomials over Fp in k
variables. We show that the linear complexity of a sequence can be easily
recovered from its associated polynomial under this bijection. Using this
approach, we present results on the existence and non-existence of per-
mutations with specific linear complexities.

3.1. Permutation Polynomials and Linear Complexity

Let Pk be the set of polynomials in Fp[x0 , ..., xk&1] of degree strictly less
than p in each indeterminate. Suppose i # [0, ..., pk&1] can be written
in base p as i=�k&1

j=0 ijp j, where ij # [0, ..., p&1]. Then we define
xi # Fp[x0 , ..., xk&1] to be the product xi0

0 xi1
1 } } } xik&1

k&1. Using this notation,
we may write each f # Pk in the form

f= :
p k&1

i=0

ai xi (3)

for some unique a0 , a1 , ..., apk&1 # Fp . We define the degree of f (written
deg f ) by

deg f={max[i | ai{0]
&1

if f{0,
if f=0.
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So for example, the polynomial x4
0x2

1+x6
0x1+x1 # F7[x0 , x1] has degree

max[4+2 } 7, 6+7, 7]=18.
Finally, we define Sk to be the set of all sequences of elements in Fp

whose period divides pk.

Theorem 8. Define a map ,k : Pk � Sk by setting

,k f=..., s&1 , s0 , s1 , ...

where

si0+i1 p+ } } } +ik&1pk&1+npk=f (i0 , i1 , ..., ik&1)

for all ij # [0, ..., p&1] and integers n. Then ,k is a bijection and deg f=d
if and only if ,k f has linear complexity d+1.

Proof. That ,k is a bijection follows from the fact that every map from
Fp

k to Fp can be represented by a polynomial in Pk . This fact is well known
[14, page 369, equation (7.20)].

It remains to establish the relation between the degree of f and the com-
plexity of ,k f. We show this by induction on k and deg f. Consider the
case k=0. Now P0 consists of the constant polynomials and S0 consists of
the constant sequences. The theorem follows in this case, since ,0 maps the
zero polynomial (of degree &1) to the zero sequence (of linear complexity
0) and any non-zero constant polynomial (of degree 0) to a corresponding
non-zero constant sequence (of linear complexity 1).

As our inductive hypothesis, we assume that k$>0 and that the theorem
holds when k<k$ and when both k=k$ and d<d $. Let f # Pk$ be such that
deg f=d $. Suppose that d $<pk$&1. Then f has no terms involving xk$&1 ,
hence may be regarded as an element of Pk$&1 . Since ,k$ restricted to Pk$&1

is equal to ,k$&1 , we find that ,k$ f has complexity d $+1, by our inductive
hypothesis. Similarly, our inductive hypothesis implies that if ,kf has linear
complexity d $+1, where d $<pk$&1, then f has degree d $.

We may now assume that d $�pk&1. Set s=,k$f and let c be the linear
complexity of s. By the inductive hypothesis, c>pk$&1. Let t :=(E&1) pk$&1 s
and set g :=,&1

k$ t. Since c>pk$&1, the linear complexity of t is equal to
c&pk$&1. Hence, by the inductive hypothesis, deg g=c&1&pk$&1. To
finish our inductive step, it suffices to show that deg g=(deg f )& pk$&1, for
then c=d $+1. Now, ti=si+pk$&1&si , since (E&1) pk$&1

=E p k$&1
&1. There-

fore, by the definition of ,k$ ,

g(x0 , x1 , ..., xk$&1)=f (x0 , x1 , ..., xk$&1+1)&f (x0 , x1 , ..., xk$&1). (4)
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Let d $=�k$&1
i=0 di$ pi, where di$ # [0, ..., p&1] and d $k$&1{0. Then we may

write

f= :
d $k$&1

i=0

xi
k$&1 fi

where fi # Pk$&1 for i=0, 1, ..., k$&1 and where deg fk$&1=�k$&2
i=0 di$ pi.

Now (4) implies

g=d $k$&1xd $k$&1&1

k$&1 fk $&1+h

where h is a polynomial involving powers of xk$&1 which are strictly less
than d $k$&1&1. Thus deg g=deg f&pk$&1 and so c=d $+1.

We have now shown that deg f=d $ implies that ,k$ f has linear com-
plexity d $+1. The converse follows since the number of sequences in Sk$ of
linear complexity d $+1 (as given in Lemma 6) is equal to the number of
polynomials in Pk$ of degree d $. Hence, by induction on d and k, the
theorem follows. K

Let f0 , ..., fk&1 # Pk . We say that ( f0 , ..., fk&1) is a (complete) orthogonal
system if for all b0 , ..., bk&1 # Fp , there exist uniquely defined elements
a0 , ..., ak&1 # Fp such that

fi (a0 , ..., ak&1)=bi for all i # [0, ..., k&1].

We define the degree of an orthogonal system to be the integer
max[deg fi | i # [0, ..., k&1]].

Theorem 9. An orthogonal system ( f0 , ..., fm&1) of degree d exists if
and only if a permutation of Fp m of linear complexity d+1 exists.

Proof. Let :0 , ..., :m&1 be a basis for Fpm over Fp . The bijection ,m

clearly induces a bijection � between the set of all m-tuples ( f0 , ..., fm&1)
of elements of Pm and the set of all sequences over Fpm of period dividing
pm, where �( f0 , ..., fm&1) is the sequence s whose i th term si is defined to
be �m&1

j=0 (,m fj) i :j . Now si=�m&1
j=0 bj :j if and only if fj (i0 , ..., im&1)=bj

for all j # [0, ..., m&1], where the elements ik # [0, ..., p&1] are defined by
i=�m&1

k=0 ik pk. Thus s is a permutation if and only if ( f0 , ..., fm&1) is an
orthogonal system. The theorem now follows from Theorem 8, the defini-
tion of the degree of an orthogonal system and Result 5. K

Motivated by the two theorems above, we make the following definition.

Definition 3. The degree of a periodic sequence is defined to be one
less than its linear complexity.
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3.2. A Non-existence Result for Permutations

Suppose that there exists a permutation over Fp m of degree d. Then there
exists an orthogonal system ( f0 , ..., fm&1) of degree d. Clearly, deg fi

�pm&1 for all i=0, ..., m&1. Furthermore, one of the polynomials
f0 , ..., fm&1 must depend on xm&1 , so in fact pm&1�d�pm&1. However,
not all values in this range can be achieved, as the following will show.

Let I be the ideal of Fp[x0 , ..., xm&1] generated by the polynomials
xp

0&x0 , x p
1 &x1 , ..., x p

m&1&xm&1. If g # Fp[x0 , ..., xm&1], then we define
the reduction of g to be the unique f # Pm such that f#g mod I. We make
use of the following result, a special case of [14, Theorem 7.41, page 371].

Result 10. The system f0 , ..., fm&1 # Fp[x0 , ..., xm&1] is orthogonal if
and only if

1. The coefficient of x p&1
0 x p&1

1 } } } x p&1
m&1 in the reduction of the poly-

nomial f p&1
0 f p&1

1 } } } f p&1
m&1 is non-zero and

2. For all t0 , ..., tm&1 # [0, ..., p&1] such that not all the ti are equal
to p&1, the coefficient of x p&1

0 x p&1
1 } } } x p&1

m&1 in the reduction of the poly-
nomial f t0

0 f t1
1 } } } f tm&1

m&1 is zero.

This theorem allows us to prove a non-existence result. We say that a
polynomial f0 in m indeterminates is a generalised permutation polynomial
if it is a part of an orthogonal system ( f0 , f1 , ..., fm&1). This can be shown
[14] to be equivalent to the property that f0 takes on every value in Fp an
equal number of times.

Theorem 11. Let k be a positive integer dividing p&1. If m=1, assume
in addition that k>1. Then there exists no generalised permutation polyno-
mial of degree k �m&1

i=0 pi.

Proof. Let k be a positive integer dividing p&1 and define d :=
k �m&1

i=0 pi. Suppose that ( f0 , ..., fm&1) is an orthogonal system such that
deg f0=d. Set t :=( p&1)�d. Then the coefficient of x p&1

0 x p&1
1 } } } x p&1

m&1 in
the reduction of f t

0 is non-zero. This contradicts Result 10, unless d=1 and
m=1. K

Corollary 12. Let k be a positive integer dividing p&1. If m=1,
assume that k>1. Then there exists no permutation of Fp m of degree
k �m&1

i=0 pi.

3.3. Existence Results for Permutations

In this subsection, we use the polynomial setting developed above to
give some direct and recursive constructions for permutations over Fp m
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with a wide range of complexities. These will allow us to prove
Theorem 16, our main constructive result.

We begin with the case when m=1. Theorem 9 implies that a permuta-
tion over Fp of linear complexity d+1 exists if and only if there exists a
polynomial f (x) of degree d such that for all b # Fp , there is a unique solu-
tion a # Fp to the equation f (a)=b. In other words, f has degree d and
induces a permutation of the elements of Fp . Such a polynomial is called
a permutation polynomial. It is well known ([14, Theorem 7.8, page 351])
that the polynomials xd are permutation polynomials whenever
gcd(d, p&1)=1.

Proposition 13. Let d be such that gcd(d, p&1)=1 and d�p&1.
Then there exists a permutation over Fp of degree d.

This result is in contrast with the non-existence result of Corollary 12: if
d>1 divides p&1, then there is no permutation polynomial of degree d
over Fp . The situation where d is neither co-prime to p&1 nor divides p&1
is in general complex. We do however have the following result (based
on [14, Corollary 7.33, page 367]): For all positive integers d, there
exists a constant P (depending only on d ) such that for all primes p�P,
there exist permutation polynomials over Fp of degree d if and only if
gcd(d, p&1)=1. Thus, if there exists a permutation polynomial of degree
d, where gcd(d, p&1){1, it is an `accident' due to the small size of p when
compared with d. An example of such an `accident' is the permutation poly-
nomial x4+3x over F7 .

We will now turn to some constructions for orthogonal systems for
general m which, in view of Theorem 9, is equivalent to constructing per-
mutations of Fp m . If the degrees of permutations are thought of as being
expressed to the base p, the first proposition tells us that we can construct
a permutation of degree d where one or more of the digits of d are zero,
while the second can be thought of as showing where digits can be inserted
into degrees of permutations over Fp m&1 to produce degrees of permutations
over Fpm when m�3.

Proposition 14. Assume that m�2. Let d0 , ..., dm&1 # [0, ..., p&1].
Suppose that dm&1{0 but that dl=0 for some l # [0, ..., m&2]. Then there
exists a permutation of Fp m of degree d :=�m&1

i=0 di pi.

Proof. Define fi :=xi for i # [0, ..., m&1]"[l] and set

fl :=\ `
m&1

i=0

xdi
i ++xl .
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Then for every b0 , ..., bm&1 , there is a unique solution (a0 , ..., am&1) to the
system fi (a0 , ..., am&1)=bi , given by ai=bi for i{l and al=bl&>m&1

i=0 adi
i .

Since ( f0 , ..., fm&1) has degree d, the proposition follows. K

Proposition 15. Assume that m�3. Let d0 , ..., dm&2 # [0, ..., p&1] and
suppose there exists a permutation over Fp m&1 of degree d :=�m&2

i=0 dipi. Let
l # [0, ..., m&1] and e # [1, ..., p&1]. Then there exists a permutation over
Fp m of degree

:
l&1

i=0

di pi+epl+ :
m&2

i=l

di pi+1.

Proof. Let ( f0 , ..., fm&2) be an orthogonal system of degree d. Without loss
of generality, we may assume that deg fm&3=d. Define ( f0$ , ..., f $m&1) by setting
fi$=fi (x0 , ..., xl&1, xl+1, ..., xm&1) for i=0, ..., m&3, setting f $m&2=
xe

l fm&3(x0 , ..., xl&1 , xl+1 , ..., xm&1)+fm&2(x0 , ..., xl&1 , xl+1 , ..., xm&1) and
setting f $m&1=xl . We claim that for every b0 , ..., bm&1, there is a unique
solution (a0 , ..., am&1) to the system fi$ (a0 , ..., am&1)=bi . Certainly, from
the definition of f $m&1 , we have al=bm&1 , and then the remainder of the
system reduces to:

fi (a0 , ..., al&1 , al+1 , ..., am&1)=bi , 0�i�m&3,

fm&2(a0 , ..., al&1 , al+1 , ..., am&1)=bm&2&be
m&1bm&3 .

This orthogonal system has a unique solution (a0 , ..., al&1, al+1, ..., am&1).
Hence f0$, ..., f $m&1 form an orthogonal system. The degree of this system is
�l&1

i=0 di pi+epl+�m&2
i=l di pi+1, so the proposition follows. K

Theorem 16. Suppose that for some m�2, there is a permutation over
Fp m of every degree d (where of course pm&1�d�pm&1) not ruled out by
Corollary 12. Then for every m$>m, there exists a permutation over Fp m$ of
every degree d $, pm$&1�d $�pm$&1, not ruled out by Corollary 12.

We show below that for fields of characteristic p where p=2, 3 or 5, the
hypothesis of Theorem 16 holds with m=2. Thus there is some evidence to
support the conjecture that for all primes p, there exists an integer m
satisfying the hypothesis of Theorem 16.

Proof of Theorem 16. We will prove the result in the special case where
m$=m+1. The full result follows from this by induction.

Let d $=�m
i=0 di pi where di # [0, ..., p&1] and dm{0. Further, suppose

that we do not have d0= } } } =dm=k, where k divides p&1. Thus d $ is
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a degree not ruled out by Corollary 12. If di=0 for some i, then an applica-
tion of Proposition 14 can be used to obtain a permutation of Fpm$ of
degree d $. Otherwise, we can assume that every di is non-zero and consider
two cases. If d0= } } } =dm&1=k, where k divides p&1, then dm{k and
there exists a permutation of Fpm&1 of degree �m&1

i=0 di+1pi. Applying
Proposition 15 with l=0 and e=d0 , we obtain a permutation of Fpm$ of
degree d $. Otherwise, in the second case, there exists a permutation of Fp m

of degree �m&1
i=0 di pi. Applying Proposition 15 with l=m and e=dm , we

obtain a permutation of Fpm$ of degree d $. K

Theorem 16 shows that in order to prove that there exist permutations
of Fpm for every m�2 and for every degree, excluding those ruled out by
our non-existence result, it is sufficient to prove the result for permutations
over Fp2 . We have already noted that the case m=1 is equivalent to the
existence of permutation polynomials of the appropriate degrees. Our next
result gives a number of special constructions over Fp2 and will be applied
to fields of small characteristic in the next subsection.

Proposition 17. Suppose that d=d0+d1p where d0 , d1 # [0, ..., p&1]
and d1{0. Then there exists a permutation over Fp2 of degree d if any one
of the following conditions hold:

(a) d0=0,

(b) a permutation over Fp of degree d0 exists and d1�2,

(c) a permutation over Fp of degree d1 exists and d0�2,

(d) there exists an integer e such that e divides d0 , e divides d1 , d1{e
and there exists a permutation over Fp of degree d0 �e,

(e) there exists an integer e such that e divides d0 , e divides d1 , d0{e
and there exists a permutation over Fp of degree d1 �e.

Proof. (a) The case where d0=0 follows by using Proposition 14.

(b) Suppose f is a permutation polynomial of Fp of degree d0 and
d1{1. Let g be a polynomial in Fp[x] of degree d1 with no roots in Fp .
Such a polynomial always exists, since we may take g to be irreducible of
degree d1 . (Note that we cannot find a polynomial in Fp[x] of degree 1
with no roots). Define ( f0 , f1) by setting

f0=g(x1) f (x0),

f1=x1 .

Since g(x1) is never zero and f (x0) is a permutation polynomial, ( f0 , f1) is
an orthogonal system. It clearly has degree d0+d1p, as required.
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(c) This case is similar to the previous one, interchanging the roles
of x0 and x1 .

(d) Suppose that for some e we have that e divides d0 , e divides d1

and there exists a permutation polynomial f of degree d0�e. Suppose also
that d1{e so that d1 �e>1. Let g be a polynomial of degree d1�e with no
roots in Fp .

Define ( f0 , f1) by setting

f0=( g(x1) f (x0))e+x1 ,

f1=g(x1) f (x0).

We claim that for every b0 , b1 , there is a unique solution (a0 , a1) to the
system fi (a0 , a1)=bi . For the first equation becomes b0=be

1+a1 giving a
unique value for a1 . Then since g(a1){0 and f is a permutation polyno-
mial, there is a unique solution a0 to the second equation b1=g(a1) f (a0).
Hence ( f0 , f1) is an orthogonal system and its degree is clearly d0+d1 p.

(e) This case is similar to the previous one. K

3.4. Permutations Over Fields of Low Characteristic

We now discuss the implications of the constructions presented above for
the degrees of permutations over Fp m when p=2, 3, 5 and 7.

We begin by considering the case m=1. We find, by Corollary 12, that
all permutations over F2 or F3 have degree 1, permutations over F5 have
degree 1 or 3 and permutations over F7 have degree 1, 4 or 5. Permutations
of all these degrees exist, by Proposition 13 and the fact that x4+3x is a
permutation polynomial over F7 .

We now consider the case m=2. We use Proposition 17 to construct
permutations of degrees not ruled out by Corollary 12. Tables VI to IX
show our results. Row i and column j of the characteristic p table contains
an entry corresponding to permutations over Fp2 of degree ip+j. If the
(i, j)th entry is `-' then degree ip+j cannot occur, by Corollary 12. If the
(i, j)th entry is `a', `b', `c', `d' or `e', then a permutation of degree ip+j
exists, by Proposition 17, Part (a), (b), (c), (d) or (e) respectively. The
entry marked `*' corresponds to a special construction for a permutation of
degree 23 over F49 , which is carried out as follows. Consider the system of
equations given by:

f0=x1 ,

f1=x5
0+2x3

1x2
0 .

This system has degree 23 and is an orthogonal system since the polyno-
mials x5, x5+2x2 and x5&2x2 are all permutation polynomials over F7 .
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TABLE VI

Characteristic 2

0 1

0 �� ��
1 a ��

TABLE VII

Characteristic 3

0 1 2

0 �� �� ��
1 a �� c
2 a b ��

TABLE VIII

Characteristic 5

0 1 2 3 4

0 �� �� �� �� ��
1 a �� c c c
2 a b �� b e
3 a b c c c
4 a b d b ��

TABLE IX

Characteristic 7

0 1 2 3 4 5 6

0 �� �� �� �� �� �� ��
1 a �� c c c c c
2 a b �� ? b b e
3 a b * �� b b e
4 a b c c c c c
5 a b c c c c c
6 a b d d b b ��
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Hence we have constructed a permutation over F49 of degree 23. The final
entry in the characteristic 7 table, marked `?', corresponds to an unknown
case. This case (degree 17) is not ruled out by Corollary 12, but we have
been unable to construct a permutation of this degree.

For fields of characteristic 2, 3 and 5 we have shown that permutations
over Fp2 of all degrees not ruled out by Corollary 12 do occur. Hence, by
Theorem 16, we have classified the integers d such that a permutation over
Fp m of degree d exists for all positive m, when p=2, 3 or 5. We could say
the same for the case p=7 if we were able to construct a permutation over
F49 of degree 17.

4. DE BRUIJN SEQUENCES OF GENERAL SPAN

We begin this section by presenting some non-existence results for span
n de Bruijn sequences over Fpm of certain complexities. These include upper
and lower bounds for the linear complexity of such sequences. We show
that the upper bound is always tight and devote the rest of the section to
the question of whether the lower bound is always achieved.

In Subsection 4.2, we concentrate on span 2 sequences and improve our
lower bound for sequences over Fp , showing that our new bound is tight.
We also demonstrate, by construction, that our first lower bound is tight
for span 2 sequences over Fpm , m�2. Thus the linear complexity of span
2 de Bruijn sequences behaves quite differently in prime and in non-prime
fields. This is similar to the behaviour for permutations highlighted by
Proposition 13 and the results of Section 3.4.

In the final subsection, we give a construction for de Bruijn sequences
over Fp m , m�2 and apply it to construct infinite families of de Bruijn
sequences of span greater than 2 with minimal linear complexity. Thus we
demonstrate that at least in some cases our lower bound is also optimum
for spans greater than 2.

4.1. Non-existence Results

Theorem 18. Let s be a span n de Bruijn sequence over Fpm such that
c(s)=d+1. Then there exists an orthogonal system ( f0 , ..., fmn&1) of degree
d such that deg fi=d&i for all i # [0, 1, ..., n&1].

Proof. We use s to define an orthogonal system as follows. Let
s0, ..., sm&1 be the component sequences of s and suppose, without loss of
generality, that c(s0)=d+1. Define, using the notation of Subsection 3.1,

fi+jn=,&1
mn ((E&1) i s j)
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where i=0, 1, ..., n&1 and j=0, 1, ..., m&1. Since c((E&1)i s0)=d+1&i,
Theorem 8 implies that deg fi=d&i for all i # [0, ..., n&1]. Since
c((E&1) i s j )�d+1 for all i # [0, ..., n&1] and j # [0, ..., m&1], we find
that the system ( f0 , ..., fmn&1) has degree d. It remains to show that
( f0 , ..., fmn&1) is an orthogonal system.

Let b0 , ..., bmn&1 # Fp . Now the system

fk(a0 , ..., amn&1)=bk , 0�k�mn&1

has a solution (a0 , ..., amn&1) if and only if

((E&1) i s j )a0+a1 p+ } } } +amn&1 pmn&1

=bi+jp , where 0�i�n&1, 0�j�m&1. (5)

For a fixed j, the equations (5) form an invertible linear system in variables
s j

l , s j
l+1 , ..., s j

l+n&1 , where l=a0+a1 p+ } } } +amn&1 pmn&1. So (5) can be
transformed into the form

s j
a0+a1 p+ } } } +amn&1 pmn&1+i=b$i+jp where 0�i�n&1, 0�j�m&1

for some uniquely defined b$0 , ..., b$mn&1. This system has a unique solution
(a0 , ..., amn&1) # Fp

mn by the de Bruijn property of s. Hence ( f0 , ..., fmn&1)
is an orthogonal system, as required. K

Corollary 19. Suppose that there exists no generalised permutation
polynomial over Fp in mn indeterminates of degree c&1. Then no span n de
Bruijn sequence over Fp m of linear complexity c, c+1, ..., c+(n&2) or
c+(n&1) exists.

In particular, suppose c&1=k �mn&1
i=0 pi where k is a positive divisor of

p&1, and where k>1 if mn=1. Then there exists no span n de Bruijn
sequence over Fp m with linear complexity c, c+1, ..., c+(n&2) or
c+(n&1).

Proof. Theorem 18 asserts that the existence of a span n de Bruijn
sequence over Fp m of linear complexity d+1 implies the existence of
generalised permutation polynomials of degrees d, d&1, ..., d&(n&1). The
first assertion of the Corollary now follows. The last assertion follows from
Theorem 11. K

Corollary 19 explains the fact that there are no de Bruijn sequences of
linear complexity 13 or 14 in Table IV. However, it leaves the gap at linear
complexity 12 unexplained.

We now use Theorem 18 to obtain upper and lower bounds on the linear
complexity of a de Bruijn sequence.

72 BLACKBURN, ETZION, AND PATERSON



File: 582A 270119 . By:BV . Date:26:08:96 . Time:15:50 LOP8M. V8.0. Page 01:01
Codes: 2801 Signs: 2125 . Length: 45 pic 0 pts, 190 mm

Corollary 20. Let s be a span n de Bruijn sequence over Fpm . Then

pmn&1+n�c(s)�pmn&1

unless p=2, m=1, n=1 where c(s)=2, or p=2, m=1, n=2 where
c(s)=3.

Proof. Let s be a span n de Bruijn sequence over Fpm . Theorem 18
states that there exists an orthogonal system ( f0 , ..., fmn&1) of degree
c(s)&1 such that deg fi=c(s)&1&i when i=0, 1, ..., n&1. Clearly, the
degree of the orthogonal system can be at most pmn&1 and Corollary 12
implies that unless p=2 and m=n=1, the degree of the system can be at
most pmn&2. This establishes the upper bound.

To establish the lower bound, first note that the degree of the orthogonal
system must be at least pmn&1, so in particular deg f0�pmn&1. This estab-
lishes the lower bound when n=1, and when p=2, m=1 and n=2. We
may therefore assume that n�2 and that it is not the case that p=2,
m=1 and n=2. Suppose that deg f0=pnm&1+l, where l�n&2. Then
deg fl=pmn&1 and deg fl+1=pmn&1&1. But now the coefficient of
x p&1

0 x p&1
1 } } } x p&1

mn&1 in the reduction of the polynomial f p&1
l fl+1 is non-

zero. This contradicts Result 10. The contradiction establishes our lower
bound. K

Corollary 20 can be proved in a more elementary fashion, avoiding the
use of Theorem 18, by using a straightforward generalisation of the proof
of [4, Corollary 4, Theorems 8 and 9].

It is easy to construct a de Bruijn sequence whose linear complexity
meets the upper bound in the above Corollary:

Lemma 21. Let s be a maximal-length linear-recurring sequence of period
pmn&1 over Fpm generated by a linear recurrence with characteristic
polynomial of degree n, primitive over Fpm , and suppose that s0=
s1= } } } =sn&2=0. Let t denote the span n de Bruijn sequence
[0, s0 , s1 , ..., sp mn&2] obtained from s by inserting an extra zero among the
first zeros. Then c(t)=pmn&1, unless p=2, m=1 and n=1, in which case
c(t)=2.

Proof. The proof of this result follows exactly that of [4, Corollary 6],
using the fact that the result of [15] used in the proof there was proved
over any field. K

We know from the Propositions 13 and 14 that a permutation of Fpm of
degree pm&1 and linear complexity pm&1+1 always exists, so that the
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lower bound above is tight for span 1 de Bruijn sequences. However the
situation is more complicated for general spans. We will investigate this
problem in the following subsections.

4.2. Span 2 de Bruijn Sequences over Prime Fields

In this subsection we will improve the lower bound of Corollary 20 for
span 2 de Bruijn sequences over Fp . We will then give a construction to
show that our new bound is in fact tight. The case p=2 is covered by
Corollary 20. For all other primes, we have:

Theorem 22. Suppose s is a span 2 de Bruijn sequence over Fp , p odd.
Then

c(s)�2p+1.

Proof. Let s be a span 2 de Bruijn sequence over Fp . We write

S=s0 , s1 , ..., sp2&1

for one period of s. Without loss of generality, we can assume that s0=0.
By Corollary 20, p+2�c(s)�p2&1. Suppose p+2�c(s)�2p. Then 2�
c((E&1)p s)�p and (E&1)p s has period p. Defining x=(E&1) p s and
writing X=x0 , x1 , ..., xp&1 for one period of x and S� =s0 , s1 , ..., sp&1 , we
have

S=S� , S� +X, S� +2X, ..., S� +( p&1) X,

since (E p&1) s=(E&1) p s=x.
We define

di={si+1&si

x0&sp&1

for 0�i�p&2,
for i=p&1

and define

ei=xi+1&xi for 0�i�p&1.

In the finite sequence

T=(s0 , s1&s0), (s1 , s2&s1), ..., (sp2&1 , s0&sp2&1)

every ordered pair of elements of Fp appears exactly once by virtue of the
de Bruijn property of s. But T may be written in the form
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(s0 , d0), (s1 , d1), ..., (sp&1 , dp&1)

(s0+x0 , d0+e0), (s1+x1 , d1+e1), ..., (sp&1+xp&1, dp&1+ep&1)

(s0+2x0 , d0+2e0), (s1+2x1 , d1+2e1), ..., (sp&1+2xp&1, dp&1+2ep&1)

b

(s0+( p&1) x0 , d0+( p&1) e0), (s1+( p&1) x1 , d1+( p&1) e1), ...,

(sp&1+( p&1) xp&1 , dp&1+( p&1) ep&1).

Note that since s has period p2, not all the terms of X are zero (for
otherwise c(x)=0 and c(s)=p). In fact no term xi is zero. For suppose
xk=0 and xl{0. Then sk , sk+p , ..., sk+( p&1) p are all equal but
sl , sl+p , ..., sl+( p&1) p are all distinct, so that some element of Fp appears
more than p times in a period of s. This contradicts the fact that each
element of Fp appears p times in s, a consequence of the de Bruijn property.
So there are two terms of X which are equal, say xk=xl . Since all 2p pairs

(sk , dk), (sk+xk , dk+ek), ..., (sk+( p&1) xk , dk+( p&1) ek),

(sl , dl), (sl+xl , dl+el), ..., (sl+( p&1) xl , dl+( p&1) el)

are distinct we must have ek=el . But from this and the fact that xk=xl we
have xk+1=xl+1. Repeatedly applying the argument above, we quickly
find that all the xi 's are equal. But then c(x)=1 and consequently c(s)=
p+1, a contradiction. K

Construction 23. Let p be an odd prime. We generate a sequence s over
Fp as follows. For 0�i, j� p&1, we define

sjp+i={i+ 1
2 ( j&1) j

i+ 1
2 ( j+1) j

for i even,
for i odd

and let s=[s0 , s1 , ..., sp2&1].

Theorem 24. Construction 23 generates a span 2 de Bruijn sequence of
linear complexity 2p+1.

Proof. We begin by calculating c(s). We write t=(E&1)p s=
(E p&1) s so that for 0�i, j� p&1,

tjp+i={ j
j+1

for i even,
for i odd.
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From this it is easy to see that (E&1)2p s=(E p&1)(E p&1) s is equal to
the constant sequence [1] of linear complexity 1. By Lemma 4, s has linear
complexity 2p+1.

Next we show that for all k, d # Fp , (k, k+d ) appears as a pair of con-
secutive elements in s, so that s is a span 2 de Bruijn sequence. We consider
a period of s as being built up from p blocks, the elements in the j th block
being sjp , ..., sjp+p&1. It is easy to check from the definition of s that if i is
even, then the difference between sjp+i and sjp+i+1 is 1+j, while if i is odd,
the difference is 1&j (all arithmetic modulo p). It follows that to find all
pairs (k, k+d ) in s, we need to show that the elements s(d&1) p+i in block
d&1 with i even and the elements s(1&d ) p+i in block 1&d with i odd
together comprise Fp . From the definition of s these elements are

i+ 1
2 (d&2)(d&1) (mod p), i even

and

i+ 1
2 (2&d )(1&d) (mod p), i odd.

Clearly these p elements have the desired property and so the theorem is
proved. K

Note that if p is odd (but not necessarily prime) and all arithmetic is
carried out modulo p, then the above method still produces p-ary span 2
de Bruijn sequences.

4.3. Span 2 de Bruijn Sequences over Non-prime Fields

From Corollary 20, we already know that the linear complexity of a
span 2 de Bruijn sequence over Fpm , m�2 is at least p2m&1+2. We have
the following construction and theorem:

Construction 25. Let m�2 and suppose s is a span 2 de Bruijn
sequence over Fp m&1 . Let T be the following sequence of p2m&1 elements:

0, 0, ..., 0, 1, 1, ..., 1, ..., p&1, p&1, ..., p&1,

consisting of p2m&2 copies of each element of Fp . Let A be the sequence of
p2m&1 elements:

0, 1, ..., p&1, 0, 1, ..., p&1, ..., 0, 1, ..., p&1.

Furthermore, define

v=[T, T+A, T+2A, ..., T+( p&1) A],
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so that v has period p2m. Let w be the sequence of period p2m over Fp m

whose first m&1 components are the components of s and whose last com-
ponent is the sequence v.

Theorem 26. Sequence w constructed as in Construction 25 is a span 2
de Bruijn sequence over Fp m with linear complexity p2m&1+2.

Proof. We begin by calculating the linear complexities of the compo-
nent sequences of w. The first m&1 sequences are just the components of
s, a sequence of period p2m&2. So these components have linear complexity
at most p2m&2. The last component sequence of w is v, and it's easy to see
that (E&1) p2m&1 v=[A], a sequence of linear complexity 2. Hence c(v)=
p2m&1+2 and using Result 5, we have c(s)=p2m&1+2.

Next we show that w is a span 2 de Bruijn sequence. Let a and b be two
arbitrary elements of Fpm . We can write a=(a0 , a1) and b=(b0 , b1) where
a0 , b0 # Fpm&1 and a1 , b1 # Fp . We will show that a and b appear con-
secutively as terms in the sequence w. Firstly, since s is a span 2 de Bruijn
sequence over Fpm&1 , there exists a unique j with 0�j<p2m&2 such that
(sj+kp2m&2 , sj+1+kp2m&2)=(a0 , b0) for every k. Therefore, we need only show
that for some k, we have (vj+kp2m&2 , vj+1+kp2m&2)=(a1 , b1). That this is the
case is a simple consequence of the construction of v from T and A. K

4.4. A Construction for de Bruijn Sequences of Minimal Complexity

Construction 27. Let m, n�2 and suppose r is a span n de Bruijn
sequence over Fp m&1 . Let s be a maximal-length linear-recurring sequence of
period pn&1&1 over Fp , with primitive minimal polynomial f (X)=
f0+f1X+ } } } +fn&2Xn&2+Xn&1 of degree n&1, and suppose that s0=
s1= } } } =sn&3=0 and s&1 , sn&2{0. Define t to be the sequence

[0, 0, ..., 0, s0 , s1 , ..., spn&1&2 , ..., s0 , s1 , ..., sp n&1&2]

consisting of p(m&1) n zeros followed by p(m&1) n copies of a period of s.
Clearly, t has period pmn&1.

Now suppose that pk&1+1�n�pk and let a be the sequence of period
pk and linear complexity n with a&1=a0= } } } =an&3=0 and an&2=1.
Thus a satisfies (E&1)n&1 a=[1].

Let T be the finite sequence t0 , t1 , ..., tp mn&1&1 consisting of the first
pmn&1 terms of t. Let A be the finite sequence a0 , a1 , ..., apmn&1&1 and define

v=[T, T+A, T+2A, ..., T+( p&1) A],

so that v has period pmn. Let w be the sequence of period pmn over Fp m

whose first m&1 components are the components of r and whose last com-
ponent is the sequence v.
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Lemma 28. Let sequence t be constructed as in Construction 27. Let V be
the vector space of dimension n&1 over Fp in which each vector
(x0 , ..., xn&1) satisfies the linear equation

f0 x0+f1 x1+ } } } +fn&2xn&2+xn&1=0.

For 0�i�p(m&1) n&1, define Vi to be the set of n-tuples

[(ti+jp(m&1) n , ti+1+p(m&1) n , ..., ti+n&1+p(m&1) n), 0�j� pn&1&1].

Then
Vi=V, 0�i�p(m&1) n&2 and

Vp(m&1) n&1=V"[(0, ..., 0, 0), (spn&1&1 , 0, ..., 0, sn&2)]

_ [(0, ..., 0, sn&2), (spn&1&1 , 0, ..., 0, 0)].

Proof. Suppose 0�i�p(m&1) n&2 is fixed. Then because t begins with
p(m&1) n zeros and s begins with a further n&2 zeros, the n-tuple
(ti , ti+1 , ..., ti+n&1) is the all-zero vector. Since gcd( p (m&1) n, pn&1&1)=1,
the pn&1&1 integers

i+jp(m&1) n, 1�j�pn&1&1

are distinct modulo pn&1&1. Moreover, from the construction of t, if
1�j�pn&1&1 then the n-tuple (ti+jp(m&1) n , ti+1+p(m&1) n , ..., ti+n&1+p(m&1) n)
is simply (sl , sl+1 , ..., sl+n&1) where l=i+( j&1) p (m&1) n (mod pn&1&1).
This applies even for j=pn&1&1 because both s and t begin with n&2
zeros.

Therefore, the set Vi consists of the all-zero vector together with the
pn&1&1 distinct n-tuples from s. Recall that s is generated by a linear
recurrence corresponding to the primitive degree n&1 polynomial f (X)=
f0+f1X+ } } } +fn&2Xn&2+Xn&1. Thus the n-tuples of Vi are all the
vectors that satisfy the linear equation f0x0+f1x1+ } } } +fn&2xn&2+
xn&1=0 and so Vi=V.

Now suppose i=p(m&1) n&1 and consider the n-tuples

(ti+jp(m&1) n , ti+1+p (m&1) n , ..., ti+n&1+p(m&1) n), 0�j�pn&1&1.

We pay special attention to the cases where j=0 and where j=pn&1&1.
When j=0, we obtain the tuple (0, ..., 0, sn&2) instead of the all-zero vector
as previously. When j=pn&1&1, we obtain (spn&1&1 , 0, ..., 0, 0) instead of
(sp n&1&1 , 0, ..., 0, sn&2). For all other j, the argument above still applies and
we obtain distinct n-tuples from s. Hence Vi is as in the statement of the
lemma and the proof is complete. K
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Theorem 29. Let p be a prime, let n be an integer such that n�2 and
define k to be the unique integer such that pk&1+1�n�pk. Suppose there
exists a primitive polynomial f of degree n&1 over Fp with the property that
the degree pk&1 polynomial f (X)(X&1) pk&n has no zero coefficients. Then
sequence w constructed in Construction 27 is a span n de Bruijn sequence
over Fp m with linear complexity pmn&1+n.

Proof. The proof that w has linear complexity pmn&1+n is similar to
the calculation in the proof of Theorem 26.

Suppose that b=(b0 , b1 , ..., bn&1) is an n-tuple of elements of Fpm . We
aim to show that b occurs as n consecutive terms in w. We write bi=(ci , di)
where ci # Fpm&1 and di # Fp . Since r is a span n de Bruijn sequence over
Fp m&1 , there exists an i with 0�i<p(m&1) n such that (c0 , c1 , ..., cn&1)
occurs at every position i+jp(m&1) n in r. So it is sufficient to show that
(d0 , d1 , ..., dn&1) occurs as an n-tuple in v at one of these positions
i+jp(m&1) n.

Now the n-tuples in t at positions i+jp(m&1) n for 0�j�pn&1&1 are
just the vectors of Vi , as defined in Lemma 28. We claim that the n-tuples
in v at positions i+jp(m&1) n for 0�j�pn&1 are the vectors

Vi+lai , 0�l�p&1, (6)

where ai=(ai , ai+1 , ..., ai+n&1).
To prove this claim, we need to consider two cases. Firstly, suppose

0�i�p(m&1) n&2. In this case, the fact that a begins with n&2 zeros
guarantees that the n-tuples occurring in v at positions i+jp(m&1) n,
0�j�pn&1&1 are the same as those occuring in t at the same positions,
i.e. the vectors of Vi . Then from the construction of v and the fact that a
has period pk�p(m&1) n, we see that for 0�j�pn&1, the n-tuples of v in
positions i+jp(m&1) n are as given in (6). Secondly, consider the case where
i=p(m&1) n&1. In this case, ai=(0, ..., 0, 1) and it is easy to see that the set
of n-tuples occuring in v at positions i+jp(m&1) n, 0�j�pn&1&1 is

Wi :=Vi "[(spn&1&1 , 0, ..., 0, 0)] _ [(spn&1&1 , 0, ..., 0, 1)].

Then the n-tuples in v at positions i+jp(m&1) n, 0�j�pn&1 are just those
of the sets Wi+lai , 0�l�p&1. But because ai=(0, ..., 0, 1), we have

[Wi+lai , 0�l�p&1]=[Vi+lai , 0�l�p&1]

and the claim also holds when i=p(m&1) n&1.
To prove that b occurs as an n-tuple of w, it is sufficient to show that the

sets of vectors in (6) cover (Fp)n. We consider two cases. Firstly suppose
0�i�p(m&1) n&2. Then Vi=V is a vector space of dimension n&1, and
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TABLE X

Suitable Polynomials over F3 , F5 , and F7

Span n Primitive polynomial of degree n&1

Characteristic 3

3 X2+X+2
4 ��
5 ��
6 ��
7 X6+X5+X3+2
8 X7+2X 6+X4+X 2+2X+1

Characteristic 5

3 X2+X+2
4 X3+3X+2
5 X4+X 3+X2+X+3

Characteristic 7

3 X2+X+3
4 X3+3X+2
5 X4+X2+4X+5

the sets appearing in (6) are just a collection of cosets of V which cover
(Fp)n if and only if ai � V, or equivalently,

ai+n&1+fn&2 ai+n&2+ } } } +f1ai+1+f0 ai{0.

In obvious notation, we write this last equation as f (E) ai{0. It is easy to
show that if e is the sequence [0, ..., 0, 1, 0] of period pk, then
a=(E&1)pk&n e, and f (E) ai{0 if and only if f (E)(E&1) pk&n ei{0.
Here, ei denotes the vector (ei , ei+1 , ..., ei+pk&1). This last condition is
equivalent to demanding that the coefficient of X pk&2&i (where exponents
are taken modulo pk) in f (X)(X&1) pk&n be non-zero. In turn, this holds
because of our choice of f.

Secondly, suppose that i=p(m&1) n&1. From our choice of a and the fact
that a has period pk�p(m&1) n, we have ai=(0, ..., 0, 1). Reasoning as
before, ai � V and the vectors [V+lai , 0�l�p&1] cover (Fp)n. So it is
sufficient to show that for i=p(m&1) n&1 we have

[Vi+lai , 0�l� p&1]=[V+lai , 0�l�p&1].

In turn, to prove this set equality, it suffices to show that

[(0, ..., 0, 0)+lai , 0�l� p&1]=[(0, ..., 0, sn&2)+la i , 0�l�p&1]
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and that

[(spn&1&1 , 0, ..., 0, sn&2)+lai , 0�l�p&1]

=[(spn&1&1 , 0, ..., 0, 0)+la i , 0�l�p&1],

all other vectors appearing in Vi also appearing in V and vice-versa. But
these two set equalities are obvious in view of the fact that ai=
(0, ..., 0, 1). K

Using the tables of irreducible polynomials in [14], we can use
Theorem 29 to construct families of minimal linear complexity de Bruijn
sequences. A little thought shows that no suitable polynomial f exists when
n=2 or when p=2. Table X gives, where possible, a degree n&1 polyno-
mial with the required properties. A `��' in the table indicates that no poly-
nomial with the required properties exists.

As an example, we can conclude from the first lines of the table that span
3, span 7 and span 8 de Bruijn sequences of linear complexities 33m&1+3,
37m&1+7 and 38m&1+8 respectively exist over every field F3m , m�2.

5. CONCLUSION

We have completely characterised the linear complexities of permuta-
tions over fields of characteristic 2, 3 and 5. Which linear complexities
occur in general? Is it the case that for all primes p, there exists an integer
M (depending only on p) such that for all m�M, every integer not ruled
out by Corollary 12 occurs as the linear complexity of a permutation over
Fp m ? Is it even the case that we may take M=2 always? (This last state-
ment seems very strong.) In particular, is there a permutation of F72 of
linear complexity 18?

We have developed upper and lower bounds on the linear complexity of
de Bruijn sequences, showing these bounds to be tight in many cases. In
particular, over Fp we showed that the minimum linear complexity of a
span 2 de Bruijn sequences is 2p+1, while over Fp m , m�2 it is p2m&1+2.
We also showed that in some cases, the bound pmn&1+n is tight for span
n sequences over Fpm , m�2. From Table V, it is definitely not tight for
sequences over F3 . Notice however that this bound is best possible over F2

[9]. Thus there is an interesting divergence between F2 and odd prime
fields, and between prime fields and non-prime fields. We believe that in
general the bound pn&1+n is not tight for Fp and propose as an open
problem the determination of the correct lower bound over Fp . However,
we conjecture the following.
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Conjecture. Let p be a prime. For every m�2, the lower bound of
pmn&1+n on the linear complexity of a span n de Bruijn sequence over Fp m

is achieved.

There are two reasons for our belief in this conjecture. Firstly, by
Theorem 26, the conjecture holds when n=2. Secondly, Theorem 29 and
Table X provide evidence that the conjecture is true in many other cases.
Furthermore, the conjecture is in agreement with our feeling that for de
Bruijn sequences, non-prime fields are well behaved in comparison to
prime fields.
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