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Abstract. The packing number of quadruples without common triples of an n-set, or the maximum number of
codewords of a code of length n, constant weight 4, and minimum Hamming distance 4, is an old problem. The
only unsolved case is n = 5 (mod 6). For 246 values of the form n = 5 (mod 6), we present constant weight
codes with these parameters, of size [(n — I)(n* — 3n — 4)]/24, which is greater by (4n — 20/24) from the pre-
vious lower bound and leaves a gap of | (n — 5)/12| to the known upper bound. For infinitely many values
n = 5 (mod 6) we give enough evidence to believe that such codes exist. The constructed codes are optimal
extended cyclic codes with these parameters. The construction of the code is done by a new approach of analyzing
the Kohler orbit graph. We also use this analysis to construct new S-cyclic Steiner Quadruple Systems. Another
important application of the analysis is in the design of optical orthogonal codes.

1. Introduction

The problem of determining the maximum number of quadruples from Z, with no com-
mon triples has received a lot of attention from the point of view of combinatorics and
coding theory. This number is denoted by the packing number, d(3, 4, n), and by A(n,
4, 4), where A(n, d, w) is the maximum number of codewords in a code of length n, cons-
tant weight w, and minimum Hamming distance d.

Hanani [1] showed that A(n, 4, 4) = n(n — 1)(n — 2)/24, for n = 2 or 4 (mod 6) by
constructing a Steiner Quadruple System (SQS). An SQS of order n (SQS(n)) is a set of
quadruples from Z, such that each triple from Z, is contained in exactly one quadruple.
Combining Hanani result, the known values of A(n, 4, 3)[2] and the Johnson bound [3]

A, d, w) < [%A(n SR 1)J

we have that A(n, 4, 4) = n(n — 1)(n — 3)/24, forn = 1 or 3 (mod 6). For n = 0 (mod
6) Kalbfleisch and Stanton [4] showed that for n = 6 + 25, k = 0, A(n, 4, 4) = n(n* —
3n — 6)/24. By using the result of Mills [5], Brouwer [6] showed that A(n, 4, 4) = n(n®
— 3n — 6)/24 for all n = 0 (mod 6). Thus, A(n, 4, 4) attains the Johnson bound, for
n #= 5 (mod 6)[6].

*This research was supported in part by the Technion V.P.R. Fund.
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The most difficult case is # = 5 (mod 6) for which not many results are known [7, p. 395].
Best [8] (see also [9]) showed 11 different codes which meet the value A(11, 4, 4) = 35.
Brouwer et al. [10] showed that A(17, 4, 4) = 156 (while from the Johnson bound A(17,
4,4) < 157). All the other lower bounds are either obtained by the second Johnson bound

n
n—w

A(n, d, w) < L A — 1, d, w)J

which in this case becomes A(n, 4,4) = (n — 3)(n* — n — 8)/24, or by the partitioning
method [10]-[12] for quadruples, which improves this bound by one or two for some values
of n. Finally as mentioned by Brouwer [6] there is some information on the structure of
a code which meets the Johnson bound. This information can be obtained from the struc-
ture of the optimal codes of length n — 1, weight 3, and minimum Hamming distance 4
[2], embedded in this code.

In this article we obtain new lower bounds on A(n, 4, 4) for 246 values of the form
n = 5 (mod 6). We describe a method that implies A(n, 4, 4) = (n — D@* — 3n — 4)24
for these values. For infinitely many values n = 5 (mod 6) we give enough evidence to
believe that such codes exist. The method is applied for some n = 2p + 1 = 23 (mod
48), p prime. It was also applied on n = 29. For example we have 4(23, 4, 4) = 418 which
improves the bound given in the tables of Brouwer et al. [10]. This lower bound is greater
by (4n — 20/24) from the previous lower bound. The gap between this bound and the upper
bound is | (n — 5)/12].

Each of our codes has an automorphism which consists of a fixed point and a cycle.
Such codes are called in [10] extended cyclic or cyclic with a fixed point. The code of
length 17, weight 4, and minimum Hamming distance 4, presented in [10] is extended
cyclic. Another 11 constant weight codes with w = 7 and d = 8 presented in [10] are
extended cyclic. The block designs associated with extended cyclic codes are called
I-rotational. Phelps [13] proved that l-rotational SQSs exist for order 2% k = 2, and if
they exist for order @ + 1 and order b + 1, where a and b are relatively primes then they
exist for order ab + 1. Hartman and Phelps [14] mentioned that Carmichal SOS(p + 1),
p = 7 (mod 12), for prime p is l-rotational.

From the results obtained in this article it is natural to conjecture that for n = 5 (mod
6), n = 17 there exist an extended cyclic code of length n, weight 4, minimum Hamming
distance 4 with (n — 1)(n®> — 3n — 4)/24 codewords. It is easy to verify that this bound
is tight for extended cyclic codes with these parameters.

Our codes are obtained by a new approach of analyzing Kohler orbit graph [15]. This
graph was constructed for the purpose of generating cyclic SQS. A cyclic SQS(n) is an
SQS of order n, with an automorphism which consists of cycles of length n, n/2 or n/4.
If each orbit of the automorphism contains for each quadruple {x, y, z, w} its symmetric
quadruple {n — x, n — y, n — z, n — w}, then the SQS is called S-cyclic, or symmetric.
The method that we are using makes it possible to construct S-cyclic SOS(4p) for all primes
p = 5 (mod 12), if a certain number theoretic conjecture is true. It was verified that the
conjecture is true for p = 5 (mod 6) such that p < 1500000. A necessary condition for
the existence of S-cyclic SQS(n), is that whenever 2p divides n, there exists an S-cyclic
SOS(2p). Thus all odd prime factors must be congruent to 1 or 5 (mod 12) [14]. The works
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of Kohler [15] and Siemon [16]-[19] show that S-cyclic SOS(2p®), o = 1, exists when
p = 5 (mod 12) if a certain number theoretic conjecture is true. No other large family
of S-cyclic SQS is known.

Our codes are closely related to another important family of constant weight codes, Op-
tical Orthogonal Codes, which were introduced in [20]. Using the same techniques
developed for the construction of our codes, we found some new optimal optical orthogonal
codes.

The rest of this article is organized as follows. In Section 2 we introduce the basic con-
cepts of difference quadruples and difference triples, used for generation of cyclic SQS.
We also describe the structure of our extended cyclic codes. In Section 3 we describe a
graph whose vertices are the difference triples and edges are the difference quadruples.
In Section 4 we describe an automorphism of this graph. In Section 5 we describe Kohler
orbit graph and its 1-factorization. In Section 6 we construct our codes and in Section 7
we present the possible extended cyclic codes for other lengths congruent to 5 modulo 6.
In Section 8 we present the construction of the S-cyclic SQS(4p). In Section 9 we present
the application to optical orthogonal codes.

2. Basic Definitions and the Code Structure

A difference triple (DT) <x, y, 2>, x, y,2€ Z, — {0}, withx + y + z = vis an
equivalence class of ordered triples under the equivalence relation <x, y, z> ~ <z, x,
y>. A difference quadruple (DQ) <x, y, z, w>, x, y, z, w€ Z, — {0}, withx + y +
z + w = v is an equivalence class of ordered quadruples under the equivalence relation
<X, ¥, Z, w> ~ <w, x, ¥, z>. We will represent extended cyclic constant weight code
with weight 4 by a set of DTs and DQs. A DT <x, y, z> represents all the cyclic shifts
of the first v = n — 1 bits of the word (0, x, x + y, v). The indices indicate the places
of the bits which are ONEs in the word. <x, y, z>> is the base DT of the set of words
X={Gx+i,x+y+iv):i€Z} (throughout this article all operations in words,
DTs, DQs, and pairs are taken modulo v, unless it is understood otherwise from the con-
text). X is the setr of words induced by the DT <x, y, z>. Given a codeword (1, I, m,
V),0 =t << m< vthe DT that induces itis <l —t, m — It — m>. A DT <ux,
¥, 2> contains three difference pairs <x + y,z>, <x,y + z> and <y, z + x>, each
pair corresponds to two out of the three first ONEs in the word.

In a similar way, a DQ <x, y, z, w> induces all the cyclic shifts of the first v bits of
the word (0, x, x + v, x + y + 2). <x, y, z, w> is the base DQ of all the words in
{Gx+i,x+y+i,x+y+z+i:i€Z}. Givenacodeword (t,, m, k), 0 < ¢
<l < m< k < v, the DQ that induces itis <l —t, m — Lk — m,t — k>. ADQ
<X, ¥, z, w> contains the DTs <x + y, z, w>, <x,y + z, w>, <x, ¥,z + w> and
<y, z, w + x> . Each triple corresponds to three out of the four ONEs in the word. An
extended cyclic code € has minimum Hamming distance 4 if and only if the set of base
DTs and base DQs that induce the words in the code meets the following two conditions,
which are a generalization of the condition in [21] for the purpose of constructing cyclic
SQS.
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(al) each DT is contained at most once in the set of base difference tuples (either as one
of the four DTs contained in a base DQ, or as a base DT).
(a2) any two base DTs, have no difference pair in common.

In this article we present a construction for extended cyclic codes of size [(n — 1)
(n* — 3n — 4)]/24, for some n = 23 (mod 48), such thatn = 2p + 1 where p is prime.
By Dirichlet Theorem [22, p. 217] any arithmetic progression a, @ + b, a + 2b, a +
3b, ... contains infinitely many primes if the integers a, b > 0, are relatively primes.
Hence, there are infinitely many primes of the form p = 11 (mod 24), and only for 244
of them explicit construction is given.

The code C contains three sets of words, C = Cy U C; U G,. C contains all the words
induced by base DQs of the form <1, i, j, j>, and therefore |C,| = [(n — 3)(n — 1)]/4.
C, contains the words of an optimal cyclic code of length n — 1, weight 3 and minimum
Hamming distance 4, followed by a ONE, and therefore |C;| = [(n — D(n — 5)I/6. C;
contains words induced by base DQs of the form <x, y, x, z>>, ¥ # z. These DQs contain
all the DTs of the form <x, y, z> such that neither <x, y, z> nor <x, z, y> appear
in any of the previous sets, and we found that |G| = [(n — D(? — 13n + 34)]/24. Our
construction builds a base set B = By U B; U B,. By, B| and B, contain the base DI
and the base DQs that induce the words of Cy, C) and C, respectively.

To construct B; and B, we build a graph whose vertices are all the DTs that don’t par-
ticipate in the DQs of By (these are all the DTs <x, y, z> such that x, y, z are different,
and each one of them is not equal v/2). The edges of the graph correspond to DQs of the
form <x, y, x, z>>. This graph has been analyzed for the purpose of constructing cyclic
SQSs. Based on this graph Kohler [15] defined the automorphism orbit graph which was
studied by Siemon [16]-[19].

The DTs in B; correspond to an independent set taken out from the graph, such that
no two vertices contain the same difference pair. The independent set is chosen in a way
such that by removing it and its incident edges, the rest of the graph contains a 1-factor
(a vertex set of disjoint edges that covers all the vertices). The edges of this 1-factor corre-
spond to the base DQs in B,.

3. A Graph for the DTs and DQs
As said before, B = By U B, U B,, where B, contains all the base DQs of the form </,

i, j. j> . These DQs contain all the DTs of the form <i, i, 2j>, <j, j, 2i>, <i,j, V2>
and <i, v/2, j>. Let

RZ{{x,y,z}:x+y+z=v,;£{x,y,z},l{x,y,z}l=3}

As we already said before, a DQ in B, has the form <x, y, x, z>, y # z. Such a DQ
contains the DTs {<x + y,x,2>, <x, x + 3, 2>, <x + 5, x5, y>, <x + 2, ¥, x>}.
The second DT is the symmetric DT of the first, and the fourth is the symmetric DT of
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the third. Hence, all the DTs formed from {x, y, z} € T, appear in the same DQ of B,.

An element {x, y, z} € T, will be called a DT. For each DT {x, y, z}, there exist three
DTs, for which each one can be used to construct a DQ of the form <a, b, a, c> together
with {x, y, z}. We call those DTs, the derivarives of {x, y, z}. The derivatives of a DT
{x, ¥, z} were defined in [16]. Our definition is slightly different from the definition of
derivatives given in [16]. This definition will make the work of finding l-factors in the
graph simpler.

The derivatives of {x, y, z} are defined as follows:

First derivative {x, y», 2}’ ={x, -3y —x} = {r,x + z, y — x}
Second derivative {x, yz}" = {x,z—x, =z} ={x,z —x,x + y}
Third derivative {x,y, z}" ={z—»» -2} =& —»y»x + 3}

In this definition we gave an artificial order to the triple. Note that if we use another order
of x, y, z in the DT, to represent the same set of DTs, the derivatives remain the same,
but their order is changed.

We define a relation Ron T, by R = {(#;, o) : t = f{ort, = tfforr, = ;" }, and
a graph O(v) whose vertices are the elements of 7, and the edges are the elements of R.

LEMMA 1. An edge e in Q(v) uniquely defines a DQ of the form <x, y, x, z>.

Proof. The quadruple defined by the edge ¢, = ({x, y, z}, {x, v, z}) = ({x, », 2z},
{x,x +z,y —x})is <x, ¥y — x, x, z>>. The DQ defined by the edge e, = ({x, y, z},
.,z =x, v 2}, {x,z —x,x + y}) is <x, 7 — x, x, y>. The quadruple defined
bytheedgees = ({x, 3. 2}, &, 0. ") =, 2L, fe —yyx + ¥ is <y, z —
¥, ¥, x>. A simple calculation shows that the four DTs of the DQ defined by ¢; are
represented by the vertices incident to ¢;. [

4. Automorphisms of Q(v)

In this section we will define an automorphism group U, € Aut(Q(v)) [15], [16], and use
this automorphism group to define Kohler orbit graph, whose vertices are representative
of orbits of T, under U,. Then, we analyze this orbit graph, and use it to understand the
structure of Q(v).

Let E(v) be the multiplicative group of the residues modulo v, v = 2p = 22 (mod 48),
between 1 and v — 1, which are relatively prime to v. For {x, y, z} € T,, and m € E(v),
we define m{x, y, z} [16] as follows:

{mx, my, mz} if mx + my + mz

mix, y, z} = (n
{—-mx, —my, —mz} ifmx + my + mz = 2v.

I
=

where mx, my and mz are taken modulo v. It is easy to verify that

m: {x, y, z} = mix, y, z}
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is an automorphism of Q(v), by noting that the set of derivatives of m{x, y, z} is the set
which contains m{a, b, ¢}, for each {a, b, ¢} which is a derivative of {x, y, z}. The set
of all such automorphisms will be called U,,.

LemMa 2 [16]. o : m = m is an homomorphism from E(v) to the group of all automor-
phisms defined in (1) with kernel {1, —1}, and E)/{1, =1} = U, S Aut(0(v)).

U, is a subgroup of Aut(Q(v)). It is well known [22, p. 79] that the group E(v), for
v = 2p, p odd prime, has a generator, and since ¢(v) = p — 1 = 2§, where ¢(.) is the
Euler function, it follows that in E(v) there are elements of order 6 and 26. Elements of
order 6 are quadratic residues modulo v, and since —1 is not a quadratic residue modulo
vfor p = 11 (mod 24), we can view all the elements of E(v) which are quadratic residues
as positive elements, and all the other elements as negative. Hence, U, = {m : m € E(v)
and m is a quadratic residue modulo v}, and if g is a generator of E(v), and w = g°, then
w is a generator of U,. The orbit of {x, y, z} € T, under U, is defined by

{x, y, 23U, = {m({x, y, 2}) : m € U}
LEMMA 3. All the orbits of U, are of equal length 6.

Proof. From the previous discussion |U,| = |E()|/2 = ¢(¥)/2 = §. Let w be a generator
of U, then {x, y, z}U,, the orbit of {x, y, z} € T, under U, is {x, y, 2} U, = {W'({x,
y,2}):0 =i <8 — 1}. Since the order of wis 8, w', 0 < i < § — 1, are all different.
KFwix,y 2t =wxyzz,l<r<dé-1 wesetx' =wh,y =wyandz' =
wiz, and then {x', y', 2’} = w'{x", y", z'}, or {x',y", 2’} = w{—x', —y', —z'}. This
implies w.l.o.g. that wx’ = y', wy' = 7/, W' = x' (or w'x' = —y', wy' = —z/,
w2’ = —x'). Hence, w’x' = x' (or w’x' = —x). The first case implies that & is divisi-
ble by 3, contradiction. The second case is impossible since w is a quadratic residue, and
—1 is not. Hence, all the elements w'({x, y, z}), 0 < i < § — 1, are different. [

5. Factorization of Q(»)

As Siemon [16] we decompose Q(v) into two subgraphs Q,(v), and Q,(v). Q;(v) consists
of all the vertices {x, y, z} such that two of x, y, z are odd. Q,(v) consists of all the ver-
tices {x, y, z} such that x, y, z are even. Note that in Q(v) there is no edge connecting
a vertex from Q;(v) with a vertex from Q,(v).

5.1. Factorization of Q(v)
Given a vertex u € Q,(v), we represent 4 = {x, ¥, z} by [i, j, k] where k is even. Therefore,

only two of the six permutations of {x, y, z} can be used to represent a vertex <x, y, 2>
in @(v). As proved in Lemma 3, the orbit of a vertex [x, y, z] is

. v, 21U, = {m(lx, y, z2]) : m € U,}
= Wk y21:0=<i=<d8—1,we EW) and o(w) = 6},
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where o(w) stands for the order of w. In the following lemmas we try to identify a group
of representatives from the orbits of U, on 0;(»), i.e., to select one vertex from each orbit.

LemMma 4. The representatives of the orbits of U, on Q;(v) can be given by [1, w', —(1
+ wHland [l —w', —(1 —w))], wherei = 1,2, ..., 6 — 1/2, w € E(v), and o(w) = é.

Proof Let w be a generator of U, and [x, y, z] € Q;(v). Since x # w2, x is odd, and
v = 2p, where p is prime, it follows that x € E(v). Therefore, there exists u € E(v) such
that # = x ', and there also exists j, 0 < j < & — 1 such that either x = w/ or x =
—w/, hence [x, y, z] € [1, yu, zu]U,. Note that by similar reasons, there exists ¢ € E(v)
such that t = y_], and there exists kK, 0 <= k = 6 — 1 such that y = +w* and hence
[x, » 2] € [, 1, EZ]U‘.‘

We now claim that [1, I, —(1 + D] and [1, "', —(1 + [7")] are the only vertices that
contain 1 in [1, /, —(1 + [I)]U,. Assume the contrary, i.e., that there exists a vertex
[1, s, —=(1 + )] in the orbit of [1, I, —(1 + /)], s # [. Hence, thereexists j, 1 < j =<
& — 1, such that [1, s, —(1 + )] = w/[l, [, —(1 + D]. Since —(1 + s) and —(1 + /)
are even, this is possible only if s = I

One can easily see that for 1 < i < j < (6 — 1)/2, we have +w! # +w/, and also
+w’ # +(w/)7. Also note that w'[l, 1, —2] and w'[1, w2, —(1 + v/2)] are not vertices
in Q(v). Hence, the representatives of the orbits of U, on @(v) can be given by [1, Wi,
—( + w)l, and [1, —w', —(1 — w')], where i = 1, 2, ..., (6 — D/2. O

CoroLLARY 1. Q(v) has &6 — 1 orbits.

COROLLARY 2. The number of vertices in Q1(v), v =n — 1 and n = 23 (mod 48) is
n — 3)(n — 7)16.

Proof By Lemma 3 and Corollary 1, Q;(v) has 6 — 1 orbits of length 5:», where 6 = (n —
3)/4. Therefore, the number of vertices in @;(v) is 6(6 — 1) = (n — 3)(n — 7)/16. O

In the sequel we will represent the orbit of [1, w', —(1 + w9] by [w'] or [w™]. After
we found a set of representatives to the orbits of U, on Qy(v), we define Q;(v)’s orbits
graph OQ,(v). The vertices of OQ,(v) are the orbits representative of Q,(v), orbits O, and
O, form an edge (0, O,) iff there exist A; € O;, A, € O, such that (A, A)) € R.

LeMMA 5. A vertex [x] € OQ,(v), is incident to at most three edges, ([x], [—x]), ([x],
[~ + 2)]), and ([x], [-(x"! + 2)]), which correspond to the first, second, and third
derivative, respectively.

Proof. Let ﬁzlbe a generator fqr U,. Consider A = [x, y, z] € O,(v). Assume A € [wil,
ie., A = wi[l, w, —(1 + w")] for some j. The three derivatives are

A = will, —w, —1 = w)]
A" =wil, -2 + w), 1 +wl . _ _
A" = wil—-( + 2w), w', 1 + w] = w[-(w™ +2), Lw™ + 1].

|
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Therefore, if A € [x] then A’ € [—x], A" € [~(x + 2)]and A" € [-(x"' +2)]. O
CoroLLARY 3. The graph OQ(v) has I-factor given by the edges ([x], [—x]).

Note that the selection of orbit representative affects the derivatives, i.c., selecting [x ']
instead of [x] exchanges the second and third derivative. An immediate result of the selec-
tion of the above representative set is the 1-factor composed of the first derivative edges.
We will now define a different set of representatives; this new set will give us a I-factor
composed of the second derivative edges, and a 1-factor short of one edge composed of
the third derivative edges. Together they form a Hamiltonian path in OQ,(v).

Let {x;}. 0 = i < 26 be the sequence defined as follows

1 iti =0
A= _(xf_[ + 2) if 7 is odd
L ifi # 0 and i is even

where the computation is done modulo v.
LemMA 6. The sequence x; has the following properties:

(1) All the x;5 are odd.
@) Fr0 =j=(— 32,

_ 344 __1+4 - =
B SRl 2 T T3 WeS Saveg e S aseg @
(3) X351 = v/2.

(4) All the x;’s are distinct.
(5) Forodd i, i = 3, x; is the second derivative of x;_,, x; is the third derivative of x;_,
and [x;] and [x;.] represent the same vertex in OQ(v).

Proof.

(1) is a simple observation from the definition.

(2) First note that x; = —3. Now simple induction proves that (2) is correct. We only
have to show that no x; for odd i < 26 — 1 is equal to v/2 = 2§ + 1, since v/2 has
no inverse. We really show that no x; = v/2 for i < 26 — 1. Again, this is a simple
observation from the fact that x4, = —a/b,0 = k = (6 — 3)/2, 1 = r < 4, and
a #= v/2.

(3) X251 = Xa-nz+1 = —Kae-3p+a +2) = (26 + /(26 — 1) = v/2
Since 26 + 1 = v/2, and v/2/i, for odd i < v, i # v/2, is equal v/2 modulo v.

(4) Assume the contrary; let i be the smallest integer such that x; = x;, and 0 < j <
i < 26 — 1. From (2) it is easy to verify that for xy.,, —a/b, 0 < k < (6 — 3)/2,
1 <r=4,a% b(modv)and a # —b (mod v) and hence x; ¢ {1, —1}. Now
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note that xo; = x3.; for 1 < k < & — 1. Hence, i should be odd, i.c., x; =
—(x;_1 + 2). Obviously if j is odd then x; = —(x;_; + 2) implying x;_; = x;_; with
contradiction to our assumption. Therefore, j should be even. We distinguish between
two cases. If j = i — 1 thenx; = x; = —(x; + 2) and hence x; = —1, contradiction.
Ifj <i— 1lthensincex; =X, X4 = —(x; +2), and x; = —(x_1 + 2), it follows
that x;,.; = x;_;, contradicting our assumption.

(5) By definition of the sequence when i is odd x; = —(x;_; + 2) = —(x_5 — 2). Since
X;+1 = x; ' when i is odd, [x;] and [x;;,] represent the same vertex in OQ,(v). L

Since {x; 262 contains all the odd elements excluding 1, —1 and v/2, and by Lemma
6 (5), [x] and [x;,,], i odd, represent the same vertex in OQ,(v) it follows by Lemma
6@2) that S = {[-(1 +4)/B + 4D, [-(5 +4)/3 +4p1:j=0,1, ..., — D2
— 1} is a set of representatives of the orbits of U, on 0:1(v).

COROLLARY 4. (1) The vertices [—1/3] and [—(26 — 1)/(26 — 3)] have degree 2.
(2) 0Q,(v) has a 1-factor defined by the second derivative edges

1+4 5+ 4 . A

3) 00,(v) — {[—1/3], [-(26 — D)/(26 — 3)1} has a I-factor defined by the third
derivative edges

S| | Leagen |l e
{H 3+ 4 { 3+4(;‘+1)D M= }

(4) The path

Oh £ ] — Bl — [l — o] — = ov — [Xsd] = [opeal =
_l 5 _§ 1 _§ - _2 - i _26 — 5 _ _26 -1
33 3 7 7 26 — 3 26 — 3

is a Hamiltonian path in OQ(v).

Proof.

(1) This is an immediate result from the facts that [—1/3]"" = [—((—=1/3)"" + 2)] = [1],
[— 26 — /28 + D] = [(—=(—(26 — /26 — N+ 2)] =[—@6 + 1)
(26 — 1)] = [v/2], and none of the orbits is [1] or [v/2] (these orbit correspond to
vertices of the form [i, i, j] and [i, j, v/2] not included in T.).

(2) and (3) are immediate consequences from the fact that S is a set of representatives
for the orbits, and from Lemma 6 (5).

(4) is a consequence of (1), (2) and (3). ]
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We now define the following set {#;}%=) of isomorphic paths in Q;(v). Each path A; con-
tains one vertex from each orbit of Q,(v) and the order between the vertices in each path
h; is identical to the order between the orbits in Oh.

By =[-3,1,21 = [3, =5,2] = ... — [=(@5 —3), 25 —5,2]
— 25 -3, —-@25 - D, 2

and h; = w"ko, 0 =i = 6 — 1, where w is an element of order 8 in E(v). Since Oh is
a Hamiltonian path in OQ,(v) we infer that

THeOREM 1. Q1(V), v = 2p, p = 11 (mod 24) can be factored into & paths of length 6 — 1.

In the sequel we will use the number theory results on the Legendre symbol, [:—j]
[22] for an odd prime p.

Lemma 7 [22]. Ifa = b (mod p) then [E] = [gj .

Lemma 8 [22]. [%} - (_])(p’—l)r‘s_

LemMA 9 [22]. (The Gaussian reciprocity law): If p and q are distinct odd primes, then

[f_’j [Q] = (=1)@-D2xXE@-1)
q p

LemMma 10. OQ,(v) can be factored into disjoint cycles of even length.

Proof. By Corollaries 3 and 4, OQ,(v) has two l-factors. If these two I-factors share an
edge, then for some x, —x™' = —(x + 2). This implies that x> + 2x — 1 = 0, and the
solutions are —1 + V2 (mod p). Thus, 2 should be a quadratic residue modulo p. By
Lemma 8

2 2 2 2 -

and hence for p = 11 + 24k, 2 is not a quadratic residue. Therefore, the I-factors are
disjoint, and OQ,(v) can be factored into disjoint cycles of even length. O

From Lemma 10, and from the properties of the automorphism, it follows that Q,(v)
can also be factored to disjoint cycles of even length. If a cycle in OQ,(v) is [01] — [0,]
— [o3] — ... — [o], then in Q;(v) there are a few corresponding cycles of the form v}
V= o= W=Vl =¥ — =V — v — VA — ... v, where all the
vie [o], forsomerl = r<6—-1,0=<i<r—1,1=<j=< [ All these cycles have
even length since [ is even by Lemma 10.
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5.2. Factorization of O5(v)

Given a vertex u € Q,(v), we represent u = {x, y, z}, where 2x’ = x, 2y’ = y, and 2z’
=z, by [x, y', z']. Since x' + y* + z' = p, in this subsection, all operations will be
done modulo p. We must also change the representation of the automorphisms in U,, and
hence the new group of automorphisms is defined by

Uv'é {m:meZ,and (m € U,orm + p € U)}.

It is easily verified that U, = {m : m € Z, and m is a quadratic residue modulo p}. Since
for m € E(v) the order of m modulo p is equal to the order of m modulo v = 2p, it follows
that w is a generator of U, iff w or w + p is a generator of U,. Also, for [x, y, z] € 0»(v),
{2x, 2y, 223U, = [x, y, Z]U,, where a vertex [x), ¥, z'] € [x, y, z]U, is isomorphic to
the vertex {2x’, 2y’ 2z'} € {2x, 2y, 2z} U,. To denote the orbit of a vertex [1, x, y] € Q>(v)
we will use the same notation used for the orbits of Q;(v). Thus, the orbit of a vertex
[1, x, y] is denoted by [x] or [y]. Note that since we changed the vertices representation,
the derivatives definition should also be changed. Similarly to OQ,(v) we define OQ,(v)
and Lemma 5 holds also for OQ;(v).

Let u = [x, y, z], and let w be a generator of U,. Since p is prime, there exist k,
such that k = x7', and there existi, 0 < i < § — 1, such that x = +w'. It follows that
the vertex u = [x, y, 2] € [, yx ', zx U, Lety = yx ™!, thenu € [1, vy, —(1 + VU,
uell, Iy, = + Uy]U,, and u € [1, — V(1 + 7), — v/(1 + y]U,. These are the
only vertices that contain 1 in the orbit of u, ie., u € [y] = v =I[-0+7y] =
[— /A + 9] = [ + 1/4)] = [ ¥/(y + D]. The only case when some of the numbers
are equal is for the orbit [1] = [(p — 1)/2] = [p — 2]. This orbit corresponds to vertices
of the form [i, i, p — 2i], which are not included in T,. Each orbit can be represented
by three pairs [x], [x'], where x, x ' € Z, — {0, 1, (p — D/2,p — 2, p — 1}, and
therefore similarly to the proof in [15], [18],

LeEmMA 11. O,(v) has (6 — 2)/3 orbits.
LemMA 12. The number of the vertices in Qy(v) is [(n — 3)(n — 11)]/48.

Proof. By Lemma 3 and Lemma 11, @5(v) has (6 — 2)/3 orbits of length 6. Therefore,
the number of vertices in Q,(v) is 6(6 — 2)/3 = [(n — 3)(n — 11)]/48. (]

Forl =x=p—2letx* =minfx,p — 1 — x}, k(x) = {x% % -1 + x)7*}.
Note that [x] and [p — 1 — x] represent the same orbit in OQ,(v), and that x(x) contains
the three representative of the orbit [x] in OQ,(v) which are less than (p — 1)/2. We par-
tition the vertices in OQ,(v) into two sets. The first set contains all the orbits [y], such
that there exists x € x(y) with k(y) = {x, —(x + 1)/x, —x/(x + 1)}. The second set contains
all the orbits [y], such that there exists x € k(y) with k(y) = {x, —1/(x + 1), —(x + D/x}.
We will call the vertices in the first set blue vertices, and the vertices in the second set
red vertices.

A vertex [x] of OQ,(v) has degree 3, for its three derivatives with exceptions in the
following three cases:
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Case 1. One of the derivatives of [x] is [y], where y € {0, 1, (p — /2, p — 2, p — 1}.
In this case [x] = [2] = [(p — 2)3] =(p — 2] =[p - 3] =[2p — D3] =
[(p + 1)/2]. The other two derivatives of [x] are [3] and [(p — 5)/2]. Hence, the vertex
[2] has degree 2.

Case 2. One of the derivatives of [x] is [x]. As in Siemon [19], we have to solve the equa-
tions x ' = x and —x = —(1 + x)"!. The solutions of the first equation are +V1, but
—1 is not a quadratic residue for p = 11 (mod 24). The solutions of the second equation
are (—1 + V5)/2 which cotresponds to one orbit [(1 + V5)/2]. The only derivative of
[ + V5)/2] which is different from [(1 + V5)/2] is [(3 + V5)/2], and hence the degree
of [l + V5)/2]is 1. To complete this case we have to find when 5 is a quadratic residue
modulo p = 11 + 24k. Since 5 and 11 + 24k are primes, we can use Lemmas 7 and
9 and obtain:

e
(-4 (3)-+(3)- (2] -+

it follows that 5 is a quadratic residue modulo p = 11 + 24k iff k = 0 or 2 (mod 5).

Since

Case 3. Some of the derivatives of [x] are equal, for [x] # [ + V5)/2]. Again, as in
Siemon [19], this is possible only when —x = —(x! + 2) and the solutions are 1 + V2.
But, this is impossible since in the proof of Lemma 10 we showed that 2 is not a quadratic
residue modulo p = 11 (mod 24).

Thus, we have the following
Lemma 13. Consider the graph OQx(v), where v = 2p and p = 11 + 24k

e Ifk = 1, 3 or 4 (mod 5) then the degree of the vertex [2] is two. The degree of all the
other vertices is three.

e Ifk = 0 or 2 (mod 5) then the degree of the vertex [2] is two, the degree of the vertex
[ + V5)/2] is one, and the degree of all the other vertices is three.

LemMA 14 [18]. The vertices [x], [y] are connected by an edge iff there exist u € x(x),
and v € k(y) such that |v — u| = 1. Furthermore, if (], [y]) is an edge in OQ,(v), then
there exist uy, uy € x(x) and vy, v, € k(y) such that u; # uy, v; # v, |v; — | = 1,
and |v, — uy| = 1. If there exist three different pairs |vi — uy| = v, — wy| = |v; —
us| = 1, such that v, vy, v3 € k(y), Uy, Uy, U3 € k(x) then the degree of [x] and [y] is less
than three.

Lemma 14 implies that for a vertex ¢, such that x(f) = {x, y, z} and the degree of [{]
is 3, all the six numbers,x — Lx + 1,y — 1,y + 1,z — 1, z + 1, appear in the vertices
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adjacent to [7]. Siemon [19] observed, that from each vertex [7], where «(r) = Lo, vzl
there are edges to the vertices [x — 1], [x + 1, [y — 1, [y + 1, [z — 1], [z + 1], if
these vertices exist. By using this property one can easily prove,

LemMa 15 [15]. OQ4(v) is connected.

We now define two types of edges in OQ,(v). Consider two orbits [x], [y] € OQ(»),
such that there exist x;, X, € k(x) ¥y, 2 € k(3), and |y; — x| = |y, — x| = L. An edge
(Ix], [¥]) is a blue edge if y; — x; = 3, — % € {—1, 1}. An edge ([x], [¥]) with y; —
x; = —land y, — x, = 1, is a red edge. Consider a vertex [x], «(x) = {x, y, 2}, 2 <
x, ¥z <(p— D2 Since [x]isadjacentto[x — 1], x + II, [y — 1], b + 1], [z — 1],
[z + 1], it follows that each vertex in OQ,(v) (except [2]) has either two blue edges, and
one red edge, or three red edges (some of the edges can be self loops, as in the case of
[0 + V5)/2]) while [2] has only two blue edges. Note that the blue edges form disjoint

cycles in OO0, (V).

LEMMA 16. A blue vertex [x] # [2] is adjacent to two blue edges and one red edge. A
red vertex, is adjacent to three red edges.

Proof. Consider the derivatives of both types of edges.

blue vertex: By definition, if [x] is a blue vertex then x(x) = {x, —(x + D/x, —x/(x + D}.

K]’ =[] k-1 = —l:] = —ﬂHJ
B X L X
A A iy as = _L sas __ X
" =[=G+2)] =[x+ 1] = _x+1] L x+i+]:|
5| 241 [ xtr ][ 2] [ x
== (Gl = - = S e =]

Thus, the edge ([x], [x]’) is a red edge, and the edges ([x], [x]") ([x]. [x]") are blue.

red vertex: By definition, if [x] is a red vertex then «(x) = {x, —1/(x + 1), —(x + D/x}.

a5 >
W =[x = -1l ~—} - —J%IHJ

" =[x+ 2)] =[x + 1]

e [-(6] -]

Thus, all three edges are red. O

Il
L ]
T
e o ]
[
|
Il
=

+ | =
|

=

Il
|
=
u |+
e,
|
==l )
Il
IH 1 I
+ =
L
[l ey
Il
|
=
4+ |=
i
+
=
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COROLLARY 5.

(1) If (Ix]. ¥]) is a red edge, then there exists u € k(x) and v € «(y) such that uv = —1.
(2) If [x] is a blue vertex, and ([x], [y]) is its red edge, then k(x) = {x;, X, X3}, where
xix; = 1 and —x?,_l € k(y).

Before preceding to the next theorem, we define the term of an unsigned inverse. Let
x € GF(p), then X7, the unsigned inverse (modulo p) of x is defined as follows

P 1
2

x lmodp) ifx!<
—x7! (mod p) otherwise

An edge ¢ of a connected undirected graph G is called a bridge if its deletion destroys
the connectivity of G. In [19] Siemon showed that bridgelessness of OQ,(v) can be reduced
to a number theoretic claim that he called “the complete interval conjecture.”” We found
another necessary and sufficient condition to the existence of a bridge in 0Q,(v).

THEOREM 2. An edge ([a — 1], [a]) € O0,(v) is a bridge iff (p — 1 — a™') € x(a) and
theset ] = {a+ 1, ...,p — 1 — a'} is closed under unsigned inverse.

The condition of Theorem 2 is easier to check with computer than the complete interval
condition. We do not give a proof of Theorem 2 since it is long and there exists another
condition which has a proof and can be also checked by computer. Using a computer pro-
gram, we have verified that for all the primes p = 5 (mod 6), p < 1500000, there is no
az1+V5)2,2<ap—-1—-alc (p — 3)/2, such that (p — 1 — a! € k(a)
and the set {a + 1, ..., p — 1 — a™'} is closed under unsigned inverse.

In the following proof we use a generalization of Petersen’s theorem,

Taeorem 3 [23, pp. 160-162]. If G is a connected cubic bridgeless graph then G has a
I-factor. Furthermore, for each edge e in G there is a 1-factor which includes e, and there
is a l-factor which doesn’t include e.

In the following discussion we will use the notation I, 2 12 <o Gp — 22,

THEOREM 4. [fp = 11 0r 59 (mod 120), oo = (1 + V5)/2, and the set I, does not contain
any proper subset closed under unsigned inverse besides {o — 1, «} then the graph
005 (v) = 00y(v) — {[a]} contains a l-factor.

Proof. By Theorem 2 if I, does not contain any proper subset closed under unsigned in-
verse besides {a — 1, a} then OQ; (v) is bridgeless.

By Lemma 13, OQ5 (v) has two vertices [2] and [(3 + V5)/2] with degree two and all
the other vertices has degree three. By connecting [2] and [(3 + V5)/2] with an edge, we
obtain a cubic graph OQ5 (v). Since OQ; (v) is bridgeless, it follows that OQ5 (v) is
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bridgeless. By Theorem 3, OQ5 (v) has a I-factor, which doesn’t contain the edge
(121, [(3 + V5)/2]) and therefore, this 1-factor is also a 1-factor of 00; (v). |

Let ([x], [y]) be an edge in the 1-factor of OQ; (v). From the definition of OQ,(v) it
follows, that there are vertices u € [x] and v € [y], u, v € OQ,(v), such that (u, v) is an
edge in Q,(v). Since all the orbits of U, are of length &, it follows from the properties
of the automorphism that the vertices in [x] and [y] can be matched in pairs, such that
each pair is connected by an edge in Q,(v). Thus, from the fact that OQ, (v) contains a
1-factor we have

COROLLARY 6. If v = 22 or 118 (mod 240), v = 2p, and the set I, does not contain any
proper subset closed under unsigned inverse then the graph O,(v) — [a] contains a
I-factor.

It is clear that either (1 + v5)/2 or —(1 + v5)/2 is a quadratic residue modulo p. Let
& be this quadratic residue, and let o(@) = s. Let 8 be a primitive root modulo p, and
v =% Onecanverifythat {y" : 0 = i <5 — 1} = {&:0 < i < s — 1}, where
8 = s,

LeMMA 17. Ifp = 11 + 24k, and k = 0 or 2 (mod 5) then the vertices of [(1 + V5)/2],
ian(v)crearercycfesv() —vi ... —vi_,0=t=r—l,andfor0<i=<gs—1,

=41, A + V572, -1 + A + V521

Proof. By the proof of Lemma 13 for k = 0 or 2 (mod 5), 5 is a quadratic residue modulo
p-Now, lete, =W, 0=<i=<s— 1,

' = [I,IJ”B —3+‘/§] = [—(2+\f5'),1+\'{§ 3+"§] =

2N 2 2D
1+\/§[11+\f§_[ l+\/_:’ 1+\/_
2 ’ 2 7

g = €
From the properties of the automorphism it follows that

_[[ +\F] ] [1+v5] ,,,_[1+v’5']" "
G = Co G = 3 €1 = Ciyi-

Note that —{x, y, z} = {x, y, z} for each DT {x, y, z} in T,. This proves for r = 0 and
the properties of the automorphism implies the proof for 1 = r < r — L. T

6. The Construction of the Code

For t = {x, y, z} let D, be the set of difference pairs induced by ¢, ie., D, = {<x,
y+z>, <ypx+z>, <z x+y>}={<x, x>, <y, —y>, <z, —z>}. Two DT},
t and m, are disjoint if D, N D, = ¢. A set T C T, has property D if all the DTs in
T are disjoint in pairs. In a set of DTs with property D, there are no two DTs which share
a common difference pair. Thus, a code that contains words induced by a set of base DTs
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with property D has weight 3 and minimum Hamming distance 4. The code C; which
was defined in section 2, has minimum Hamming distance 4, iff the set B, has property
D. The maximal set with property D in T, has size (n — 5)/6. Since each DT from Q,(v)
contains one even element, and two odd elements, and each DT from (,(v) contains three
even elements, a set of size (n — 5)/6 with property D must contain (n — 7)/8 = (6 — 1)/2
DTs from Qy(v) and (n + 1)/24 = (6 + 1)/6 DTs from Q,(v).

In the next lemma we present sets with property D of size r + | s/3 | (r and s are as
defined in Lemma 17) from Q,(v), in the case v = 22 + 48k, and k = 0 or 2 (mod 5).
In this case we proved that 5 is a quadratic residue modulo p (Lemma 13), and hence it
is also a quadratic residue module v. The set with property D that we need is a subset

of [(1 + V3)/2].

LEMMA 18. For v = 22 + 48k, where k = 0 or 2 (mod 5), o = (1 + V5)/2, and v as
in Lemma 17, the set

W=k of*), (@ + o) 0<t<r—1,k=3i,0<i< % ,

of vertices from Q,(v), has property D.

Proof. As we mentioned before (Lemma 11), 1 appears exactly three times in each orbit
of U, on Oy(v), from the automorphism properties it follows that each even number in
T = {0} appears three times in the difference pairs induced by the DTS in each orbit.

Since o = o+ o2 andy' ¢ {o’: 0 < i = 5 — 1}, it follows that the DT 4[¢, '™,

—(a' + '] has a common difference pair with the following five DTs of [«],

Y2, &7l — (&% + &) = —df]

Vi), &, (@1 + o) — il

,_Y:[di’ cxf""], —(fxi e ai+1) — _ai+2]

,Yr[a,i+l’ a£+2, _(a£+1 AL aH'Z) = _a,i.+3]

‘y‘[a”z, a£+3, _(a£+?_ A ai+3) = _ai+4]_
Since the set {y[¢/, &'*!, —(¢/ + &™1)] : 0 < i = 5 — 1}, contains 5 vertices, where
s # 0 (mod 3), we can take from each such set at most | s/3 | DTs, without violating
property D. It follows that the set W has property D. O

Now we want to show that Q(v) has sets of (n — 5)/6 vertices with property D. Since
these sets include vertices from Q,(v) and from Q,(v) we will represent a vertex [x, y, z]
€ O,(v) by the original notation {2x, 2y, 2z} in order that all the integers in all the ver-
tices will be residues modulo v.

Let Wi = {a"" @2y g0y _yq + g2 :0 < i < (6 — 1)/2} where y is
the odd solution of the equation x(I + &®*P?) = 2(mod v), and let Wy = {&T@*D?
D, —a®™%y —ya — &™) : 0 < i < (6 — 1)/2}, where y is the odd solution of
the equation x(1 — &®*??) = 2(mod v). Clearly, x(1 + &®*Y?) = 2(mod v), has a unique
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solution z modulo p = v/2. Since 1 + &®*2 modulo v is even, z and z + p are the

solutions of the same equation modulo v. Similar considerations lead to the conclusion
that x(1 — &**Y?) = 2(mod v) has a unique odd solution modulo v. Now, let W; equals
either Wi or Wi, W, = {&*{2, 2, =2(1 + @)} : 0 < i < (8 + 1)/6}, and W* =
W, U W,

THEOREM 5. For v = 22 + 48k, where k = 0 or 2 (mod 5), if o(&) = & the set W¥ of
(n — 5)/6 vertices from Q(v) has property D.

Proof. Assume W* = W; U W,. Since o(¢&) = 8, we can set v = & in the set W and
therefore W, € W and by Lemma 18 it has property D. All the vertices from W| belong
to the orbit [&(“D’Q] of O;(v). As mentioned before (Lemma 4), 1 appears exactly twice
in the vertices from each orbit of Q;(v), and from the properties of the automorphism it
follows that each odd number 7 appears twice in the orbit [&®*V™]. It is easy to see that
t appears in the vertices u = [a®*V?, 1, —r(1 + a®*P?)], and &®*D? i, Since (G¢TV?)?
is equal to « it follows that W contains exactly one of these two vertices. Combining
this with the fact that each even number appears exactly once in each orbit of Q;(v) we
conclude that Wi has property D.

Let y be the odd solution of the equation x(1 + a2y = 2(mod v). The difference
pairs that W{ induces contain only the following even numbers,

Ly(1 + GOTIRGFEHDR . < o i I} s {+2&f+(a+mz:0 27 oSl B
e 2 £ 2
o

= : : =
i_z(a{5+l)f2)21+l 0 <i<

The difference pairs induced by W, contain the following even numbers,

iz&f:055<5+1} = {iz(&(ﬁ“m)ﬁf:055<3;1

2

and therefore both sets are disjoint.
The same arguments hold for W* = W U W;. ]

A k-isolated 1-factor in a graph G = (V, E) is a subgraph G' = (V, E’) such that the
degree of k vertices in G ' is 0, and the degree of all the other vertices is 1. A k-isolated
I-factor of Q(v) is said to have property D if the set of isolated vertices has property D.
Our purpose is to find an (n — 5)/6-isolated 1-factor with property D in Q(v). The edges
of a k-isolated 1-factor with property D in Q(v), will be the base DQs of the form <x, y,
x, z> of B,. The (n — 5)/6 base DTs {x, y, z} of B; will be chosen from the isolated
vertices, one from each vertex. Each one of the DTs represented by the vertex can be chosen.
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THEOREM 6. If v = 22 or 118 (mod 240), and the order of « = (1 + V5)/12 is not 5, 10
(ifn > 23),7 or 14, and I,, v = 2p, does not contain any proper subset closed under
unsigned inverse besides {a — 1, a}, then Q,(v) has an (n + 1)/24-isolated 1-factor with
property D.

Proof. As proved in Lemma 18 W has property D. By Lemma 17 all the DTs in ¥ belong
to cycles in O(v) of length s, where s = o(«). Lemma 17 also implies that the DTs from
W appear in the following vertices in these cycles (r and s are as defined in Lemma 17),

W=<w0=<t<r—1Lk=3,0=<ic<

(ST

Now, for odd |s/3 |, letm = |s/3]| and m = |s/3| — 1 otherwise. By Theorem 4
and Lemma 17, it is clear that the first m vertices from W on each such cycle can be com-
pleted to an isolated 1-factor of O,(v). A simple calculation shows that unless the order
of (1 + V5)/2is 5, 10 (if n > 23), 7 or 14, the number of isolated vertices, rm, is at
least (6 + 1)/6. Hence, Q,(v) has an (n + 1)/24-isolated I-factor with property D. [

In Theorem 5, we showed that when o(&) = §, each set W* has size (n — 5)/6 and prop-
erty D. In Theorem 6 we have constructed an (n + 1)/24-isolated factor with property
D of Q,(v). When o(a) = 8 the (n + 1)/24 isolated vertices from O,(v) belong to W,.
To complete the construction of the code we have to show that after removing the (n —
7)/8 = (6 — 1)/2 vertices that belong to W, from Q,(v), the rest of Q;(v) contains a
1-factor. We believe that there are many different 1-factors in the subgraph of Q;(v) induced
by the remaining vertices. We used a check program that checks if one certain type of
a l-factor exists in the above subgraph.

By Theorem 1, O;(v) can be factored into § isomorphic paths, #;, 0 < i < 6 of even
length 6 — 1. Since o(&) = &, we set b; = a'h,. The ;s contain only third and second
derivative edges. It is not difficult to show that cach two of the A;s are connected by ex-
actly one first derivative edge, the location of which can be calculated. In order to find
a l-factor in the subgraph induced by all the vertices which are not isolated, we use the
first derivative edges. Recall that the (6 — 1)/2 vertices from O;(v) that belong to W, were
taken from a single orbit (either [6®*V?] or [—a®*P2]). Hence, the (6 — 1)/2 vertices
which belong to W, appear in the same location in each k;, 0 < i < (6 — 1)/2. The A;s
are of even length and therefore by taking out those vertices we are left with (6 — 1)/2
paths of odd length, A; .4, and (6 — 1)/2 paths of even length, h; ..., 0 < i < (6 — 1)/2.
(6 — 1)/2 is even and hence the paths h;, 0 < i < (6 — 1)/2 can be partitioned into pairs,
(hi, By, © # j. In our check program we allowed only pairs such that 2(i — j) divides
(6 — 1)/2, so that we have only to check one such pair, h; and its pair mate, and by the
automorphism properties the situation is exactly the same with all the other (6 — 5)/4 pairs.
From now on we refer only to the pair Ay, h;. Both hy and h; have a single first derivative
edge connecting them to a third path A, k ¢ {0, i}. The check program goes through all
the possible pairs of 7 and k, and checks if the first derivative edges leave hy and &; from
even locations in hg,4y and h; ,4; and reaches Ay in one even location and one odd location
in Ay 4y, Where the even location is before the odd one. In this case we have an (n — 5)/6-
isolated I-factor in Q(v). The scenario is depicted in Figure 1.
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Using the program we found a code forn = 119, w = 4 and d = 4 with 67850 codewords.
Forn =119,6 =29, a = 93, & = —a = 25, a®*P2 = 113 and —a®*D"? = 5. All
the isolated vertices from Q,(v) are taken from the orbit [113] = [—29/27] = [&®™?]
which appears in location 13 (out of 0. . .27) in the A;s. In this case we connect the vertex
that appears in location 12 in hj and belongs to [69] = [—25/27] to its first derivative that
appears in kg in location 16 and belongs to [49] = [—33/35]; and the vertex that appears
in h; in location 8, and belongs to [55] = [—17/19] to its first derivative that appears in
hy in location 17, and belongs to [63] = [—37/35]. We ran the check program for values
of n < 600000, where o(x) = 6. There are 1624 primes p of the form 11 + 24k, k = 0
or 2(mod 5), p < 300000, out of which for 246 o(a) = 6. The program found (n —
5)/6-isolated 1-factor of Q(v), where the isolated vertices are the vertices of W* for all these
values except eight (n = 23, 263, 359, 503, 2039, 3863, 7079 and 13943). For six of
these eight values (23, 263, 359, 2039, 7079 and 13943) we used slightly different struc-
ture to achieve the (n — 35)/6-isolated 1-factor. For example, instead of checking all the
& — 2 possible values of k, we only check values that will lead to the (6 + 1)/2 paths
which do not contain vertices from W;. In this case the first edge derivative still have to
leave hg and h; from even locations in kg, and A; .44 but they should reach ki (rather than
Py oas), 6 — 1)/2 < k < (8 + 3)/2 + i, in one even location and one odd location, where
the even location appears before the odd one.

One can think of many other possible 1-factorizations of Q;(v) — W, and as we said
before, we believe that in each case there are many different I-factorizations.

For the cases where o(¢) < &, we have a computer search that searches for an (n —
7)/8-isolated 1-factor of Q(v) that together with the (n + 1)/24-isolated 1-factor of
Theorem 6 forms an (n — 3)/6-isolated 1-factor of Q(v). The program first builds (n +
1)/24-isolated 1-factor of Q,(v) with property D, using the set W from Lemma 18, as the
set of isolated vertices. Then it searches for an (n — 7)/8-isolated 1-factor of Q,(v), whose
union with Wis an (n — 3)/6-isolated factor of Q(v) with property D. The (n — 7)/8-isolated
I-factor found by the program is a subgraph of the even length disjoint cycles of Q,(v) (see
Lemma 10). The program first builds the above cycles, then tries to find a set of (n —
7)/8 vertices, that together with the (n + 1)/24-isolated vertices from O,(v) form a set with
property D, such that the distance (in edges) between any two successive vertices in a cycle
is odd. After those isolated vertices are found, an (n — 7)/8-isolated I-factor of Q;(v) can
be easily built. The union of both isolated 1-factors forms an (n — 5)/6-isolated 1-factor in
o).

Using the search program we were able to find codes of lengths 23, 119, 263 and 359.
The search for length 503 was too long. The DTs and the DQs of the code of length 23,
are given in the Appendix.

Conjecture 1. If I, p = v/2 has no proper subset closed under unsigned inverse, except
{(V'S — /2, (v5 + 1)/2}, then Q(v) has (n — 5)/6-isolated 1-factor with property D.

Using the above two constructions we found extended cyclic codes for 244 values of
n < 600000.
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7. Other 1-Rotational Packings of Quadruples

In this section we discuss possible constructions of extended cyclic codes for all the other
cases of n = 5 (mod 6). To achieve the upper bound of (n — 1)(n* — 3n — 4)/24, ex-
cept for n = 23 (mod 24) the code must contain some cycles which are not of full length.

(1) for n = 5 (mod 24), the code must contain one cycle of length (n — 1)/4.

(2) for n = 11 (mod 24), the code must contain at least one cycle of length (n — 1)/2.

(3) for n = 17 (mod 24), the code must contain one cycle of length (n — 1)/4, and at
least one cycle of length (n — 1)/2.

We believe in all these cases there exist codes in which all the other cycles are of full
length. A cycle of length (n — 1)/4, is induced by the DQ <(n — 1)/4, (n — D/4, (n —
D/4, (n — D/4>, and it contains the DT <(n — D/4, (n — /4, (n — 1)/2>. A cycle
of length (n — 1)/2, is induced by the DQ <i, j, i, j>, where i + j = (n — 1)/2, and
it contains the DTS <i,j, (n — 1)/2> and <j, i, (n — 1)/2>. Note that the construction
we used, matched all triples of the form <, j, (n — 1)/2>, with the triples <i, i, n —
1 —2i>and <j,j,n — 1 — 2j>, to create all the quadruples of the form <i, i, j,
Jj>. Thus, in all the cases where an optimal extended cyclic code must contain a cycle
of length (n — 1)/2, i.e., when n = 11 or 17 (mod 24), the code cannot include all the
DQs of the form <i, i, j, j>.

In the cases where n = 5 (mod 24), the DQ <(n — 1)/4, (n — /4, (n — D/4, (n
— 1)/4>, induced by the DT <(n — 1)/4, (n — 1)/4, (n — 1)/2>, must be added to the
code. Thus, (r — 5)/4 DQs of the form <i, i, j, j> containing all the DTs of the form
<i,i,n —1 —2i> and <i,j, (n — 1)/2>, can be added to the code, and the vertex
set of Q(n — 1) remains the same. The size of the vertex set of @(n — 1) in this case is
((n — 3)(n — 6))/12, out of which an (n — 5)/6-isolated 1-factor should be picked. In this
case Oi(n — 1) contains ((n — 5)(n — 3))/16 vertices, and it should have an (n —
5)/8-isolated I-factor. The size of O,(n — 1) is ((n — 5)(n — 15))/48, and it should have
an (n — 5)/24-isolated I-factor. Since for n = 5 (mod 48) the sizes of both graphs and
the sizes of the isolated factors are even, the construction is feasible. For n = 29 (mod
48) the graphs contain odd numbers of vertices, and the sizes of the isolated factors are
odd too, thus the construction is feasible in this case too. But in this case, since n = 5
(mod 24), (n — 1)/2 = 2 (mod 12), which is not a prime, the isolated factors should be
picked in a different way.

Using a search program, that finds an (n — 5)/6-isolated 1-factor of an hypergraph, whose
vertices are all the DTs and edges are all the DQs, we were able to find an optimal extended
cyclic code of length n = 29, weight w = 4, and minimum Hamming distance d = 4,
of size 875 (see the Appendix), thus proving that A(29, 4, 4) = 875. This code contains
all the DQs of the form <, i, j, j>. Our search program uses a heuristic used by Diener
[24] and Phelps [21] for the purpose of enumerating cyclic $QSs.

For n = 47 (mod 48) the size of vertex set of Q;(n — 1), is ((n — 3)(n — 7))/16, thus
Q;(v) contains an even number of vertices. But, like in the case of n = 23 (mod 48), it
should have an (n — 7)/8-isolated I-factor, and since (n — 7)/8 is odd when n = 47 (mod
48), this is clearly impossible. Hence, the code cannot include all the DQs of the form
< T
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The other cases of n = 23 (mod 48) are the cases when n = 167 or 215 (mod 240).
In these cases the graph OQ,(n — 1) — {[2]} has a l-factor, provided again that Ij,_y»
does not contain any proper subset closed under unsigned inverse (the proof is slightly
different from the proof of Theorem 4), but the (n + 1)/24-isolated l-factor from Q,(v)
should be chosen in a different way. Using a search program we found an extended cyclic
code with n = 167, w = 4 and d = 4 that contains 189,406 words. The program finds
the cycles in Q;(166) with the techniques implied by the proof of Lemma 10. In this case,
only one cycle that contains 6806 vertices is created. 0,(166) also contains a Hamiltonian
cycle, whose length is 2241, and the program found a 27-isolated 1-factor in Q(166).

8. S-cyclic SQSp)

The analysis of Kohler orbit graph and the analysis of the sequence in Lemma 6 can be
used also for generating S-cyclic SQS(4p), for p prime, p = 5 (mod 12). Our code C =
C, U C,, where C, contains all the DQs of the form <i, i, j, j> as in Section 2. Note
that <p, p, p, p> is a DQ in .

The set T,, n = 4p, and the graph Q(4p) are defined as in Section 3. T, is partitioned
into three subsets:

I (<%0 2> 22 b, 2 by and 2|23
2. {<x,y, 2> : 4 kx, 4 ky, 2lx, 2|y, and 4|z}
3. {<x,y z> : 4|x, 4|y, and 4|z}

Q(4p) is partitioned into three subgraphs, Q;(4p), 1 < i < 3, contains vertices from the
set i. Note that in O(4p) there is no edge connecting vertex from Q;(4p) to Q;(4p) for i
# j. One can easily verify that

LemMa 19. OQ,(dp) is isomorphic to Q1(2p), and Qz(4p) is isomorphic to Gr(2p)

By combining Lemma 19, and the results of Siemon [19], we infer

COROLLARY 7.

1. O,(4p) has a l-factor.
2. IfI,, p = nl/4, contains no proper subset closed under unsigned inverse beside {o — 1,
a}, where o = (1 + V5)/2, then Qs(4p) has a l-factor.

Now, we have to show that @,(4p) has a l-factor. Recall that E(m) is the multiplicative
group of residues between 1 and m — 1 modulo m, relatively prime to m.

Lemma 20. There exists an element w € E(4p) such that o(w) = 26,6 = (p — 1)/2, and
w® = 2p — 1 (mod 4p).
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Proof. Let w be a generator of E(2p). Therefore o(w) = 28 in E(2p) and w® = —1 (mod
2p). Hence, w® can be equal either to 2p — 1 or to 4p — 1 modulo 4p.

& (6 &\ (8 ;
W=+ w- 1P = E: [J w—-1D=1+ E, [;] w — 1)
i=0 i=1

Since w — 1 and 6 are even, L2, ?) (w — 1)’ is divisible by 4 and therefore w’ = 1
(mod 4). Hence, w® = 2p — 1 (mod 4p), and o(w) = 26 in E(4p). O

Let EY(p) = {w':0 < i < 26 — 1} be the cyclic subgroup of E(4p) generated by
an element w € E@p), o(w) = 26, and w® = 2p — 1 (mod 4p). Since 4p — 1 ¢ E*(4p),
we have

E(p) = E*(4p) U E™(4p),

where E-(4p) = {—w':0 = i = 26 — 1}. Let U be the automorphism group of Q,(4p)
defined in Section 4. Since m{x, y, z} = —m{x, y, z}, U = {m : m € E*(4p)}, where
m is the automorphism defined by m : {x, y, z} = m{x, y, z}, it follows that |U| = 2.
Since —1 ¢ E*(4p) it follows that

LemMA 21. The orbit of {x, y, z} € T, under U is
{x,y, 23U = (wW'({x, v, 2}) : 0 = i = 26 — 1},

where w is a generator of E"(4p).

Henceforth, let w be a generator of E™(4p).

LEMMA 22. The orbits of U on Qy(4p) are

(1) {[+w'}2=] each one of length 26.
@) [-w*] = [2p + 1] of length 6.
(3) Lpl, [3p] of length 26.

Proof. Since —1 ¢ E¥(4p) one can prove similarly to Lemma 4 that the elements of (1)
and (2) are distinct. Since there is no i, such that w' = p or 3p, and since px = —3px
for x € E(4p), it follows that (3) contains two distinct orbits, which do not appear in (1)
and (2). Clearly only odd numbers can represent orbits in Q;(4p). The only odd numbers
which are not covered in (1), (2) and (3), or by their inverses are 1, —1 and 2p — 1. The
orbit [1] contains all the DTs of the form {i, {, n — 2i} such that i is odd: and the orbit
[2p — 1] contains all the DTs of the form {i, j, 2p} such that i and j are odd. These DTs
do not belong to T,,. Finally [—1] does not represent an orbit. Hence, (1), (2) and (3) are
all the representatives of the orbits of Q(4p).

To calculate the length of orbits from (1) and (2) we use a method similar to the proof
of Lemma 3, but in this case if wx = y, w'y = x, and Wz = z (or w'x = —y, Wy =
—x and W'z = z), then w?" = 1, and r = §. Hence, w’x = y or w’x = —y, and therefore



306 S. BITAN AND T. ETZION

either [x, y, z] € [W’] or [x, y, z]1 € [-w’]. Since w® = 2p — 1 and —w’ = 2p + 11t
follows that [—w®] = [2p + 1] is of length 6. We already showed that the orbit [w’] =
[2p — 1] does not belong to OQ;(4p). Hence, the only orbit from (1) and (2) of length
8 is [-w®] = [2p + 1], and all the orbits from (1) are of length 26.

For the orbits [ p] and [3p], note that the first element in each DT in these orbits is relative-
ly prime to p and the second is a multiple of p. These orbits have length 26 since —1 ¢
E*(@4p), E*(4p) = W' : 0 =i = 25 — 1}. El

We next define the orbit graph of U on Q,(4p), in a similar way to Section 5. We show
that OQ,(4p) contains a Hamiltonian path.

Lemma 23.

(1) [2p + 1] is adjacent only to [2p — 3], and each vertex from [2p + 1] is connected
to two vertices u, v € [2p — 3], such that u = why.

(2) [ p] and [3p] are adjacent.

(3) Let v be a vertex from [p] or [3p], then v'" = w'y.

Proof.

(D [2p + 11" = [2p — 1] which does not belong to 0Q,(4p). 2p + 1)' = 2p + 1 (mod
4p), and hence [2p + 11" = [2p + 1] = [2p — 3]. Consider a vertex t € [2p +
I, t=wll,2p +1,2p —2],0 <i<6— 11" =wll,2p — 3, 2p + 2] and
" =wi2p —1,3,2p —2] = Qp — Dwl, 2p — 3, 2p + 2] = wt"

@ [pl' = [-p] = [3p]-

(3) Consider a vertex v € [p]l. v = [x, px, —x(p + D]. v'" = [x(2p — D), px, x(p +
D] = 2p — DIx, px, —x(p + )] = w’v. The proof for v € [3p] is similar. [

Let {x;}, and {y;}, 0 = i = 26 — 1 be the sequences defined as follows

1 ifi =0
=4 (D) s e

v ifi # 0and i is even
= (2p +1 ifi =0

—(y—; +2) ifiisodd
Nk if i # 0 and i is even

where the computations are done modulo 4p. Similarly to the proof of Lemma 6 one can
prove,

LemMA 24. The sequences {x;} and {y;} has the following properties:

(1) All the x;s and the y;s are odd.
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(2 For0 < j < 8/2 —1,

3+ 4 1+ 4 5+ 4 3 + 4

Xgj+1 = _Téﬁ;x‘m?’ 5 —m;hﬁs = —m;hjﬂ o 4,

3+4y 144 5+4f 3 +4
Yaj+1 P 1+ 4 Yaj+2 74 3+ 4 Yaj+3 P 3+ 45 Yaj+a P 5+ 4

(3) x25-1 = p, and y»5_; = 3p.

(4) All the x;s and the ys are distinct.

(5) When i is odd, x; is the second derivative of x;_,, y; is the second derivative of y;_1,
x; is the third derivative of x;_,, and y; is the third derivative of y;_,.

From Lemmas 23 and 24, and the fact that [z] = [z7'] we infer

Lemma 25. The path

Oh— el - ol =)~ il By — ] =]
— e =D = el =[xl — [y —[2p + 1] =

4 BB v
optaes] - Bogt] - 3] 4]
E —g] - [2;:—%] —p + 1l

is a Hamiltonian path in OQ(4p).

Note that by the definition of the sequences {x;} and {y;}, and of Oh, the numerator
of the fraction representing orbits in the path is congruent to 1 modulo 4, and the denominator
is congruent to 3 modulo 4. An edge between orbits that belong to the same sequence
({x;} or {y;}) with equal numerators is a second derivative edge, and an edge between
orbits that belong to the same sequence with equal denominators is a third derivative edge.
The edge between [ p] and [3p] is a first derivative edge, and the edge connecting [2p + 1]
and [2p — 3] = [2p — 1/3] is a third derivative edge.

Before we proceed we define the following set {#; 2851 of isomorphic paths in Q,(4p).
Each path A; contains one vertex from each orbit of @,(4p) and the order between the ver-
tices in each path h; is identical to the order between the orbits in Oh.

By — | S3o=S =3 s =g = s = (p— 2) 0 p — 4 O — [ =(Cpi= D) p, =]~
Ip2p7p 21 Ip—2.7p —i(p—4),2p 21 —. 03, 2p =500+ 2] —
B2p— L 2p—21 — [,2p + 1, 2p — 2]
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and h; = why, 0 < i < 26 — 1. Vix,; Will denote the vertex from #; that belongs to orbit
[x]. Note that by Lemma 23(1) and the properties of U, h; and h; 5, 0 < i < § — 1 share
the last vertex, i.e., w/[2p + 1, 1, 2p — 2]. Apart from this vertex, each other vertex of
01(4p) appears exactly once in one of the A;s. Let H, 0 < i < § — 1, be the path defined
by concatenating k; with the reverse path of A, s, where the vertex w'[2p + 1, 1, 2p —
2] is taken only once. Clearly all the H;s are disjoint, and their union covers the vertices
in 0,(4p).

ra

o

LEMMA 26. V[_,_ayp-2)1i = Vis1,i+> Where w' = 3 or =3, and f = 2p — i
3

=
i

Proof. For tl}e VETLeX V(—( p—ayi( p-2)1,i = wf[p_ —4, —(p — 2), 2], (wf[—(p = 2P —
4.2D"'=wlp—-2,p—4,2p+6] =3w'(p —2/3,2p—(p+4/3,2p +2] =
w10 = Vi O
Lemma 27. 0(3) and o(—3) modulo 4p are divisible by 4.

Proof- Since

Rlekas [ -p

it follows that o(3) modulo p is even. Since p = 1 (mod 4) it follows that —1 is a quadratic

residue modulo p, and since o(3) is even modulo p, it follows that 3 = —1 (mod p) for
some even i and hence o(3) modulo p is divisible by 4. The same argument holds for —3.
Thus o(3) and o(—3) modulo 4p are divisible by 4. (%

LeEmMA 28. Let | be as in Lemma 26. The set {H;}2} can be partitioned to two disjoint
sets, such that for 0 < i < 6 — 1, H, is in the first set and H,,; belongs to the second
(where subscripts are taken modulo 6).

Proof. Note that since k; and h;, ; belong to H; we only have to show that the smallest m
such that m! = 0 (mod 6) is even. This follows immediately from the fact that w' € {3,
—3} and o(3) and o(—3) modulo 4p is divisible by 4. O

Lemma 29. Let [ be as in Lemma 26. The subgraph induced by the vertices of Hy and H,
has a l-factor.

Proof.

1. First we construct a cycle by connecting vi_( p—ay/ p—2)10 ad Vi_( p—ayp—2)).5 to their first
derivatives v ; and v 7} ;4.5 Tespectively (see Lemma 26). Since the cycle contains two
vertices from [2p + 1], the same number of vertices from hy and h;, and the same
number of vertices from h; and k., it follows that the length of the cycle is even.
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2. The rest of the subgraph is decomposed into the following paths

= Vgt ;_V_P;“ !—V[p]";
p—6| 2|

ol
Jas  VipLis

] e -V =
=l s —p=t
p—6 r—2

v v v = T =
1, _3 0 _p-8 0 _p—4 0
3 3 p—6 p—6
v = Ve = = iy = =W =
A1 =i 8] gty
3 z} p—6 p—6
v - = = =
p+10 |:2P_P_‘ ! ’V;;.p_f._“} !
2p—_3 { p—6 =2
ptéd
3
Vr e AR i =l —
piif [:z,p—P;“] 146 ‘2;;—"’—4} I+
p—_3 | I+5 p—6 P2
pté
3

These paths are of even length since they begin and end with the same derivative edges
(second or third).
3. The only two vertices which remain are v(3, ;, and Vi3p1,i+5, Which are connected by

Lemma 23(3).
The scenario is depicted in Figure 2. O
From Lemmas 28, 29 and the automorphism properties we conclude
Tueorem 7. Q,(4p) has a l-factor.
CoroLLARY 8. If I,, p = n/4, contains no proper subset closed under unsigned inverse
beside {a — 1, o}, where o = (1 + V5)/2, then there exists an S-cyclic SOS(4p) with
p = 5 (mod 12).

As said before, it was verified that for p < 1500000, 1, contains no proper subset closed
under unsigned inverse.
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pt10
p=2

—first derivative edge.

=second derivative edge.
; U2t

=third derivative edge.

Figure 2.
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9. Optical Orthogonal Codes

An (n, w, N)-Optical Orthogonal Code (OOC) [201C,n > 1,1 = w=n0=< A < w,
is a set of binary codewords of length n, with weight w satisfying:

1. for all x € C, every two different cyclic shifts of x intersect in at most A ONEs. (This
implies that the orbit of every word x € C is full.)
2. for all x, y € C, x # y, any two cyclic shifts of x and y intersect in at most A ONEs,

For given n, w and A, ®(n, w, A) denotes the largest possible size of an (1, w, A)-O0C.
An (n, w, A)-OOC that achieves this size is optimal. One can easily observe that an (n,
w, A)-OOC is obtained by taking one representative from all the full length orbits of a cyclic
constant weight code of length n, weight w and minimum distance 2(w — A). Construction
for OOCs can be found in [20], [25], [26].

We consider the case A\ = 2 and w = 4. When n = 2 or 4 (mod 6) and a l-rotational
SQS exists an optimal (n — 1, 4, 2)-O0C is obtained by taking one word from each orbit
with ZERO in the point fixed by the rotational automorphism. A strictly cyclic SQS, is
a cyclic SQS whose orbits are of full length. A necessary condition for the existence of
a strictly cyclic SOS(n) is n = 2 or 10 (mod 24). When a strictly cyclic SOS(n) exists
it corresponds to an optimal (n, 4, 2)-OOC. The full orbits of S-cyclic SQS also correspond
to an optimal (n, 4, 2)-O0C. Hence, if n = 4p, p = 5 (mod 12) if I, contains no proper
subsets closed under unsigned inverse beside {o — 1, @}, where & = (1 + +/5)/2, then
an optimal (n, 4, 2)-O0C exists.

For the cases n = 2p, where p = 11 (mod 12), i.e., n = 22 (mod 24), we used a similar
analysis as in the previous sections and found more optimal (n, 2, 4)-O0C depending on
the order of some elements.

10. Conclusion

We have constructed optimal extended cyclic constant weight codes of weight 4, minimum
Hamming distance 4, and size (n — 1)(n*> — 3n — 4))/24, for 246 values of the form
n = 5 (mod 6). This improves the known lower bound of A(n, 4, 4) in these cases. For
infinitely many value n = 5 (mod 6) we gave enough evidence to believe that such codes
exist. Lots of open ground for research remains in this area and some of the questions
are casily raised from our discussion. We have used our method to construct new S-cyclic
Steiner Quadruple Systems, and discussed the application of the construction in the design
of optimal (n, 2, 4)-optical orthogonal codes.
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Appendix

Rotational Code for n = 23, w = 4, d = 4

By (1,1,10,10) <€2,2,9,9) <(3,3,8,8) <(4,4,7,7)
{5,5,6,6)

B, (2,6, 14) (1, 3, 18) el i

By G304, 30125 2152 35IES 06, T 6 L, 90 3 50
G173 S ESh Gl 18R (305 00 5
(1,2,17,2> 42,848 (2,412, 4

Rotational Code for n = 29, w = 4,d = 4

By i 0L 1L L T3, 135 020D B2 123 ns L,
(4, 4,10, 10y (5,5,9,9) {6, 6, 8, 8)

B, (4, 8, 16) @35 22 {6, 9, 13} 7, 10,11

B, (2.4,18,4y (2,6,2,18% (2,10,6,10% (1,2,1,24)
1,4, 19,4y 1,5, 17, 5% {1.6, 1, 205 ¢1,8,11, 8}
159017y 85 3 07 i L S T GR350
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