
480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 3, MAY 1984

However, this implies that Therefore we have a set splitting.

I(e44 E {0,1,2} -{a> -{b}, s E C}I < G(4
The (v)’ G-DAG code decision problem can be proven to be

NP complete for all v 2 3 by a similar construction in which the
forall m E {0,1,2} binary tree is replaced by a (v - l)-ary tree.

in contradiction to (A4). 0

Choose some x as in the last lemma, and let
s1 = {s/s E Ifs, a(s) = x}; [II
s, = s - SI. PI

Every vertex s E Vd’o must have a descendent s’ such that
a(s’) = x, and another descendent s” such that (Y(s”) E [31
{0,1,2} - {x} - {(Y(S)}. In other words

for all c E C there exists e E S, such that e E c [41
and such that e E S, there exists e E c.

REFERENCES

M. R. Garey and D. S. Johnson, Computers and Intractability. San
Francisco, CA: Freeman, 1979, pp. 221-222.
R. M. Karp, “Reducibility among combinatorical problems,” in
Complexity of Computer Computation, R. N. Miller and J. W.
Thatcher, Eds. New York: Plenum, 1972, pp. 85-104.
L. LOVBSZ, “Covering and colorings of hypergraphs,” in Proc. 4th
Southeastern Co@ Combinatorics. Graph theory, and Computing.
Winnipeg, Manitoba: Utilitas Mathematics Publ., 1973, pp. 3-12.
R. L. Rivest and A. Shamir, “How to reuse a “write-once” memory,”
Inform. Control, vol. 55, pp. l-19, Oct./Nov./Dee. 1982.

Algorithms for the Generation of Full-Length
Shift-Register Sequences
TUVI ETZION AND ABRAHAM LEMPEL, FELLOW, IEEE

Abstract-Two algorithms are presented for the generation of full-length
shift-register cycles, also referred to as de Bruijn sequences. The first
algorithm generates 2 k’g(n,k) full cycles of length 2”, using 3n + k .
g(n, k) bits of storage, where k is a free parameter in the range 1 2 k I
2((n-4)/2), and g(n, k) is of the ‘order of n - 210g k. The second algo-
rithm generates about 2 n2/4 full cycles of length 2’J, using about n2/2 bits
of storage. In both algorithms, the time required to produce the next bit
from the last n bits is close to n. A possible application to the construction
of stream ciphers is indicated.

I. INTRODUCTION

T HIS paper deals with the construction of full-length
nonlinear shift-register cycles, also referred to as de

Bruijn sequences. A comprehensive survey of past work on
this subject can be found in [l]. The common approach to
this construction is to consider a shift-register producing
many short cycles, e.g., the pure cycling register, which are
then joined together to form a full cycle.

The same practice is follbwed in this paper. We propose
two methods of constructing full cycles. One produces full
cycles by joining those generated by the pure cycling
register (PCR); the other employs the pure summing reg-
ister (PSR) for the same purpose. It is well known [2] that

Manuscript received February 8, 1983; revised August 20, 1983.
The authors are with the Computer Science Department, Technion,

Israel Institute of Technology, Haifa, Israel.

the number of full cycles of length 2” is 22”m’-n. The
various methods proposed so far differ in the number of
distinct full cycles of same length that the method pro-
duces, and in the complexity per produced cycle. Fredrick-
sen [3] shows how to generate 22n-5 full cycles of length 2”
from a PCR of length n (PCR,) using 6n bits of storage,
and n units of time to produce the next cycle bit from the
last n bits.

In Section III of this paper, we show how to construct
2k .&a> k, full cycles of length 2” from those of PCR, using
3n + k . g(n, k) bits of storage, where k is a constant in
the range 1 I k I 2 cnp4)12, g(n, k) is approximately (n -
210g k)(l - (l/(1 + log k))), and logarithms are taken to
the base 2. The time required to produce the next bit from
the last n bits is o(n), as n + co.

In Section IV, we propose a method of constructing full
cycles by joining the cycles of a PSR. To the best of the
authors’ knowledge, this is the first method employing the
PSR. We show how to produce about 2”*j4, or more
exactly,

‘yy (nFkl)

full cycles of length 2” using about n2/2 bits of storage
and o(n) units of time to produce the next bit.

OOlS-9448/84/0500-0480$01.00 01984 IEEE

ETZION AND LEMPEL: ALGORITHMS FOR GENERATION OF SEQUENCES

The number of full cycles and the amount of stored
information required to generate them via the proposed
algorithms, make it worthwhile to consider their use in
cryptographic applications, The ma in problem in the de-
sign of a stream cipher [4] is the construction of the key
stream from a so-called “key seed.” In our case, the full
cycle acts as the key stream, while the stored information
required to run the algorithm plays the role of the key seed.
The full cycles produced by the proposed algorithms possess
some of the important properties desired of key streams.
For instance, the number of distinct keys is exponential in
the length of the seed which, in the algorithm of Section
III, depends on a controllable parameter k.

In addition any full cycle has many of the randomness
properties [5] and a large linear span [6] required of key
streams.

II. THE JOINING OF CYCLES

A feedback shift-register (FSR) of length IZ has 2” states
corresponding to the set B” of all binary n-tuples. The
feedback function f(x), x = (xl,xZ;.., xn) E B”, of the
FSR induces a mapp ing F: B” + B” under which xF = y,
where

Y; = xi+l> i= I,..., n - 1, and y, =f(x).
The conjugate 2 and the companion x’ of a state x =

(x1, -9, * * * > x,) are defined by
2 = (Xl @ 1, X2,‘. 0) XJ,

x’ = (Xl,. . . , q-1, x, @ l),
where $ denotes modu lo 2 addition.

A k-cycle C of a FSR is a (cyclic) sequence of k distinct
states C = (x1,x2; ..,xk), xi E B”, such that xi = x,F
and xi+i = xiF, i = 1,2;. ., k - 1. The state diagram of
a FSR is called a factor if each state belongs to a cycle.
Two cycles C, and C, are said to be adjacent if they are
(state) disjoint and there exists a state x on C, whose
conjugate 2 or companion x’ is on C,.

Theorem 1 [5]: Two adjacent cycles C, and C,, with x
on C, and 2(x’) on C,, are joined into a single cycle when
the successors (predecessors) of x and 2 (x’) are inter-
changed.

Example I: Consider the PCR, with f(x,, x2, x3) = xi.
Its state diagram is the factor of F ig. l(a). Its four cycles
are

Cl = (OOO),
c, = (001,010, loo),
c, = (011,110, lOl),
c, = (111).

C, and C, are adjacent, with 000 being the conjugate of
100. Similarly, C, and C, are adjacent, with 010 being the
companion of 011. Applying Theorem 1 to, say, C, and C,
we obtain the cycle C = (001,011,110,101,010,100). The
new factor; consisting of C,, C, and C,, is shown in F ig.
l(b).

0 000

6 000

001

Fs- 010

100

(4

“11
4 101

110

481

8
111

8
111

@ I
Fig. 1. The factors of Example 1.

III. CONSTRUCTION OF FULL CYCLES FROM PCR,

The PCR, is an n-stage FSR whose feedback function
f(x,, X2,’ * *9 x,) = xi. It is well known [5] that the length
of a cycle from PCR, is a divisor of II.

The weight W(S) of a state S is the number of ONES in
s = (Sl, s2; . 0) sn), i.e., W(S) = C;=isi.

Clearly, states belonging to the same cycle of PCR, have
the same weight.

The weight W(C) of a cycle C from PCR, is the weight
of each of its states.

Fredricksen [3] shows how to join the cycles of PCR, to
form a full cycle of length 2”. There are four possibilities
for consecutive states on a full cycle (or any other cycle) of
a FSR:

In a) and b) both states come from the same PCR, cycle.
In c) the weight of the second state exceeds by 1 that of the
first state. In d) the weight of the first state exceeds by 1
that of the second state. Hence, in c) and d) the two states
come from different PCR, cycles.

Lemma 1: Let C, be a cycle of weight k > 0 from
PCR,. Then there exists a state S on C, such that its
companion S’ is on a cycle C, whose weight is k - 1.

Proof: Since W(C,) > 0 there exists a state of the
form S = (sr;.., s,-r, 1) on C,. Hence, S’ =
(Sl,’ * -9 s~-~,O) and W(S’) = W(S) - 1 = k - 1. There-
fore S’ is on a PCR, cycle C,, with W(C,) = k - 1.

Q .E.D.

Lemma 1 and Theorem 1 lead to a simple way of
constructing a full cycle. At each step we have a main
cycle, obtained by joining a subset of PCR, cycles, and the
remaining PCR, cycles. Initially, the ma in cycle is chosen
to be the unique PCR, cycle of weight zero. Next, the ma in

482

cycle is extended by joining to it the (unique) cycle of
weight one. In a general step i, we extend the main cycle
by joining to it all the PCR, cycles of weight i (in arbitrary
order). This is always possible because the current main
cycle contains all of the states whose weight is less than i
and, since each PCR, cycle of weight i > 1 has a state
ending in a ONE, it can be joined (see Theorem 1 and
Lemma 1) to the current main cycle.

This procedure ends when all the PCR, cycles have been
joined together.

We proceed now to a precise and detailed description of
the proposed construction.

Consider the ordered set V = {V(i)}::; of k states,
1 I k I 2((‘-4)/2), constructed as follows:

1) The first [logk] + 1 bits of V(i) form the base-2
representation of i. (Note that the first bit is always
ZERO.)

2) The last [log kl + 2 bits of each V(i) are ONES
preceded by a single ZERO.

3) In positions [log k] + 2 + ([log k] + l)j, for integers
j satisfying

Olj<
I

n -[logk] -[logk] - 3
[logk] + 1 1

each V(i) has a ZERO.
4) The remaining bits for each V(i) are chosen arbi-

trarily.

Example 2: n = 16, k = 8. The set V for these values of
nand k takes the form

00000x~1’x~i’x$)0xf)x~‘)01111
ooo1ox~~~x~~~x~~~ox~~~x~*~o1111
00100xf)x~~)X~3)OXf)X~3)01111
oo11ox~“x~~~x~~~ox~~~x~~~ollll
01000x~5)x~~)x~5)0x~~)x~5)01111
01010x~~~x~~~x~~~0x~~~x~~~01111
o11oox~‘~x~‘~x~‘~ox~‘~x~~~o1111
o111ox~~~x~s~x~*~ox~*~x~s~o1111

where the xJ”’ are free parameters.
It can be easily verified that the righthand block of

[log k] + 1 ONES form the unique largest run of ONES in
each V(i), and that every pair of states differ in their first
[log k] + 1 bits. Therefore we have Lemma 2.

Lemma 2: No two states of V belong to the same cycle
of PCR,.

The construction of a full cycle from the PCR, cycles
proceeds by a sequence of joins where at each step a cycle
of least weight from among the remaining PCR, cycles is
joined to the current main cycle. A join is performed by
means of a pair of companion states S and S’, with S on
the next PCR, cycle C in line and S’ on the current main
cycle. The states S and S’ are called the bridging states of
the join. The bridging state S on C is determined as
follows: if C contains a state from Y then it is chosen as

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-~& NO. 3, MAY 1984

the bridging state of C. Otherwise, the choice of S is as in
Fredrickson [3], [7]. Let M be the state on C whose value
]M], when viewed as a number in base-2 notation is maxi-
mal. If]M] = 1. 2’, where I is odd and r 2 0, then the
state S such that]SI = 1 is also on C, and we take S to be
the bridging state of C.

In any case the chosen bridging state S for the current
PCR, cycle C always ends in a ONE. By Lemma 1, its
companion S’ belongs to a PCR, cycle whose weight is
smaller than that of C. Therefore, S’ must be on the
current main cycle. By Theorem 1, interchanging the pre-
decessors of S and S’ will create the next main cycle by
joining the current one with C.

A full cycle obtained by joining PCR, cycles as de-
scribed above, can be generated bit-by-bit following a
procedure based on the underlying rules for the joining of
cycles. In this procedure, the (i + n)th bit bi+n of the full
cycle is determined from the preceding n-bit state pi =
(bi, bi+l,e . ‘3 b,, n- r). If pi served as a predecessor of a
bridging state (S or S’) then bi+n = bj $ 1; otherwise,
bi+n = bi. The formal steps for determining bi+n are pre-
sented in the following algorithm.

Algorithm Al Choose a constant k such that 1 I k I
2((“-4)/2). Choose and store an ordered set of bridging
states V = { V(i)}F:t+. Initially, set PO = (0, 0, . . +, 0) = 0”.
Given pi = (bi, bi+l,. . ., bi + n _ i), proceed to produce pi + i
= (&+I,. . .> bj+n-l, b,,,) as follows.

(Al) Examine the cyclic shifts of /3: = (bi+l,. . . ,
bj+n-l, 1) for the existence of a shift a that begins
with a ZERO and ends with 1 + [log k] ONES. If
no such (Y exists go to (A3).

(A2) Let (x* be the first 1 + [log k] bits of (Y and let
]a*] = j, the base-2 value of (Y*. If j > k - 1 go to
(A3); otherwise, if (Y = V(j) = Pt go to (A5); if
a = V(j) # pi* go to (A4).

(A3) Let M be the cyclic shift of /3: with the largest
base-2 value /MI = 1. 2’, I odd, r 2 0. Let S be
the shift of /3: such that IS] = 1. If S = & go to
(A9

(A4) Set bi+,, = bi and stop.
(A5) Set bi+n = bi @ 1.

Theorem 2: a) For every choice of k, in the indicated
range, and of the set V Algorithm A produces a full cycle
of length 2”.

b) For a given choice of k there are 2k.g(n9k) distinct
choices for the set I’, where

g(n, k) = n - 3 - [logk] - [logk]

_ n - 3 -[logk] -[logkj
I [logk] + 1

thus, Algorithm A can be used to produce 2k.g(n,k) distir
full cycles.

1;
1ct

c) The working space that Algorithm A requires to
produce a full cycle is 3n + k . g(n, k) bits and the work
required to produce the next bit is 2n cyclic shifts and
about the same number of n-bit comparisons.

ETZION AND LEMPEL: ALGORITHMS FOR GENERATION OF SEQUENCES 483

Proof: a) follows directly from the discussion preced-
ing Algorithm A.

b) is due to the fact that each V(i) is specified up to
exactly g(n, k) free parameters and that no state except for
on-“l”, a = 1 + [lo@], may serve as a bridging state via
both of the two criteria: either by being a member of the
set V or by representing the odd part of a maximal shift.
This, together with Lemma 2, imply that distinct choices
for the set I’ correspond to distinct sets of bridging states
and, hence, to distinct full cycles.

c) follows directly from Algorithm A. Note that only
information about members of the set v has to be stored
and, there, only the g(n, k) free bit-values of each V(i)
require storage. Q .E.D.

IV. CONSTRUCTIONOFFULLCYCLESFROM PSR,

The PSR, is an n-stage FSR whose feedback function
f(x,, X2,’ * *9 x,) = Xl $ x2 CB *. * CBX,.

An extended representation E(C) of a cycle C of PSR, is
given by an (n + 1)-tuple [x0x1 . .. x,-ix,] where
(xc), X1,’ * *> x,-i) is a state on C and x, = x0 @ xi
cI3 *** $X,-l.

The extended weight W ,(C) of C is defined as the
number of ONES in E(C) = [x0x1 ... x,-ix,], i.e.,
W ,(C) = .q&Xi.

The following lemma is an immediate result of the above
definitions.

Lemma 3: For every cycle C from PSR, we have
W ,(C) = 2k, for some 0 2 k I I(n + 1)/2], and for each
state S on C 2k - 1 I W(S) I 2k.

Cis called a run-cycle if all the ONES in E(C) form a
cyclic run.

For each cycle C of PSR,, with W ,(C) = 2k < II + 1;
we define a unique preferred state P(C). For a run-cycle,
P(C) = (12k0”-2k); for a cycle with more than one (cyclic)
run of ONES the preferred state is defined as follows.

Let E*(C) = [O’l’Ob, . . . b,-,-,-JO] be the unique ex-
tended representation of C which satisfies the following
properties:

a) r20;
b) t is the length of the longest run of ONES;
c) among all extended representations of this form, with

the same maximal t, E*(C) is the largest when viewed
as a number in base-2 notation.

Then, the preferred state for C is P(C) = (O’l’Ob, * . .
4-,-,-J).

Lemma 4: Let C, be a nonrun-cycle from PSR, and let
P(C,) = (O’l’lOb, . . . bnptl-r-21). Then the states B =
(lO’l’~Ob, . . . bnprlprp2) and the companion of P(C,) are
on a cycle C, # C,, with W ,(C,) = W ,(C,). Furthermore,
if t, is the length of the longest run of ONES in P(C,)
then either t, = t, + 1, or t, = t, and IP(> IP(C,)l.

Proof: Clearly W(B) = W(P(C,)) = W&C,) = 2k
for some k. Hence, by Lemma 3, W ,(C,) = 2k = W ,(C,).
It is also clear that E(C,) = [10’1’10b, * + - bn-tl-r-20].
Hence, if r = 0, t, = t, + 1; if r > 0, then an alternate

extended representation of C, is given by E’(C,) =
[Or-‘lh()b, . . . b, _ rl _ r- ,OlO], which implies

IP(2 l(O’-llrlOb, * *. bn-+e201) 1 ’ IP(C

Thus, in any case C, # C, and, since the two possible
successors of B are P(C,) and the companion of P(C,), it
follows that the companion of P(C,) is the successor of B
on C,. Q .E.D.

Lemma 5: Let U = (ui;.., u,-i,l) be a state on a
cycle C, of PSR, with W(U) + 1 = W ,(C,) = 2k for some
k 2 1. Then the companion U’ of U is on a PSR, cycle C,
with W ,(C,) = 2k - 2.

Proof: This lemma follows directly from the defini-
tion of U’ and Lemma 3. Q .E.D.

Lemmas 3, 4, 5 lead to a construction of a large class of
full cycles from those of PSR,. Lemma 4 suggests a way of
joining all cycles with the same extended weight. For each
extended weight 2k, we start with the run-cycle of this
weight as an initial ma in cycle. In each step the current
ma in cycle is expanded by joining to it the PSR, cycle of
extended weight 2k with the longest run of ONES; if there
are two or more cycles with the same longest run of ONES,
join the one with the largest preferred state. Recalling the
definition of bridging states in Section III, it is easy to
verify that this order of joins is always possible if the
preferred state of the PSR, cycle in line is chosen as a
bridging state S for the join (the described order guaran-
tees that its companion S’ belongs to the current ma in
cycle).

Once all the PSR, cycles of extended weight 2k are
joined together into a corresponding ma in cycle MC,,
0 I k I [(n + 1)/2], we apply Lemma 5 to joining the
MC, cycles, in order of increasing k, to form a full cycle.

W e proceed now to describe an algorithm for producing
the (i + n)th bit bi+,, of the resulting full cycle from the
following inputs:

a) the preceding n-bit state pi = (bi, bi+l,* . *, bi+,-l),
b) the parity p; of pi, pi = bi @ bi,l @ *e. @bi+,-l>

and
c) the weight W(&) of pi.

The production of bi+,, from the above inputs is based
on the fact, that when (x0, xi;.., x,-i) +
(Xl,. . .> x,~i,x,) then &xi is even if and only if both
states are on the same PSR, cycle.

Before presenting the formal steps of the algorithm, we
remind the reader that the preferred state S of each PSR,
nonrun-cycle and its companion S’ serve as bridging states
in the process of forming one of the MC, cycles. In the
process of joining the MC, cycles into a full cycle, the
bridging state S on the MC, cycle in line, 1 I k
I 1 (n + 1)/2], can be chosen as any state of odd weight
and a trailing ONE; i.e., the bridging state Sck) for MC,
can be any state of the form Sck) = ($, $,a * *, s,k-i, 1)
with W(Sck)) = 2k - 1 (see Lemma 5).

484 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 3, MAY 1984

In Algorithm B, given below, we first check whether the
given state pi serves as a predecessor of a bridging state (S
or S’). If it does, we set bi+n =pi @ 1, pi+l = bi @ 1, and
W(&+J = W(&) - b, + (pi @ 1); otherwise, bi+, = pi,

pi+1 = bi> and W(Pi+l) = W(Pi> - bi + Pi*
Algorithm B: For every k such that 1 I k

I [(n + 1)/2] h c oose and store a bridging state U(2k) of
the form U (*k) = ($, &. . .) z&i, 1) with W(C!~(~~)) = 2k
- 1. Initially, set & = (0,O; * *,O) = O”, p. = 0 W(/3,) =
0. Given pi = (bi, bi+l,* * a, bi+n-l), pi, wi = W(&) pro-
ceed to produce&+l = (bi+l>+ * ‘9 bi+n-1, b,+,), Pi+12 Wi+l
as follows:

(Bl) If pi @ b, = 1 go to (B3).
(B2) If (bi+l,..., bi+n-l,l) = U(“+~+*) go to (B6);

otherwise go to (B5).
(B3) If &+ = [bi+l ..a bi+ no ,101 is a run-cycle go to

(B5); otherwise, find the cyclic shift EF = [O’l’Ob,
-.. be- n f ,.+,+310] of &+ whose first n bits form a

choose the set { U(2k)} is

c) follows directly from Algorithm B. It is clear that
most of the work consists of finding the preferred state of

/3; = [b,+l . . . bi+,-$01 = [O’ll’lXilO]

in (B3). Let Ei* be the shift of &+ whose first n bits form a
preferred state. Initially, El* = /3:. Given E* =
[Or~lf2X210] and a shift E: = [Or31f3Xs10] of BP, set ,?$ =
ET if either t, > t,, or t, = t, and IETl > /EFI. After n
shifts EF will have the required form. Q.E.D.

Example 3: For n = 6, and the bridging states

preferred state. uC2) = (0, 0, o,o, 0, l),
(B4) If E; = & go to (B6).
(B5) Set bi+,, =pi, pi+l = bi, wi+i = wi - b, +pi, and uC4)= (1,0,1,0,0,1),

stop. u@)= (l,l,O,l,l,l),
036) Set b,+, = pi $ 1, pi+l = bi @ 1, wi+i = w, - bi

+ (Pi @ 1).
the full successive bits of one period of the full cycle
generated by Algorithm B are

Theorem 3: a) For every choice of the set of states
{ U(2k)}L$+1)/21 Algorithm B produces a full cycle of
length 2”.

00000011000010100111000111100110
11111101100101110101011010001001.

b) There are It should be noted that a similar algorithm can be
derived for the complement of the PSR,, i.e., the FSR with
the feedback function f(xl, x2; --, xn) = x1 CB x2
%3 . . . 63x, @ 1.

distinct choices for the set of states { U(2k)}; thus Algo-
rithm B can be used to produce REFERENCES

‘@yJ’ in--$) Ill

distinct full cycles. VI

c) The working space that Algorithm B requires to pro- [31
duce a full cycle is about n*/2 bits and the work required
to produce the next bit is n cyclic shifts and about the

[41

same number of n-bit comparisons. [51

Proof a) follows directly from the discussion preced- i61
ing Algorithm B.

b) is due to the fact that different sets of bridging states
produce different full cycles. The number of ways to

ITI

H. Fredricksen, “A survey of full length nonlinear shift register cycle
algorithms,” SIAM Rev., vol. 24, pp. 195-221, Apr. 1982.
N. G. de Gmijn, “A combinatorial problem,” in Nederl. Akad.
Wetensch. Proc., vol. 49, 1946, pp. 158-164.
H. Fredricksen, “A class of non-linear de Bruijn cycles,” J. Comb.
Theory, Ser. A, vol. 19, pp. 192-199, Sept. 1975.
A. Lempel, “Cryptology in transition,” Computing Surveys, vol. 11,
pp. 285-303, Dec. 1979.
S. W. Golomb, Shift Register Sequences. San Francisco: Holden-
Day, 1967.
A. H. Chan, R. A. Games, and E. L. Key, “On the complexities of de
Bruijn sequences,” J. Comb. Theory, Ser. A, vol. 33, pp. 233-246,
Nov. 1982.
H. Fredricksen, “Generation of the Ford sequence of length 2”, n
large,” J. Comb. Theory, Ser. A, vol. 12, pp. 153-154, 1972.

