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However, this implies that Therefore we have a set splitting. 

I(e44 E {0,1,2} -{a> -{b}, s E C}I < G(4 
The (v)’ G-DAG code decision problem can be proven to be 

NP complete for all v 2 3 by a similar construction in which the 
forall m E {0,1,2} binary tree is replaced by a (v - l)-ary tree. 

in contradiction to (A4). 0 

Choose some x as in the last lemma, and let 
s1 = {s/s E Ifs, a(s) = x}; [II 
s, = s - SI. PI 

Every vertex s E Vd’o must have a descendent s’ such that 
a(s’) = x, and another descendent s” such that (Y(s”) E [31 
{0,1,2} - {x} - {(Y(S)}. In other words 

for all c E C there exists e E S, such that e E c [41 
and such that e E S, there exists e E c. 
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Algorithms for the Generation of Full-Length 
Shift-Register Sequences 
TUVI ETZION AND ABRAHAM LEMPEL, FELLOW, IEEE 

Abstract-Two algorithms are presented for the generation of full-length 
shift-register cycles, also referred to as de Bruijn sequences. The first 
algorithm generates 2 k’g(n,k) full cycles of length 2”, using 3n + k . 
g( n, k) bits of storage, where k is a free parameter in the range 1 2 k I 
2((n-4)/2), and g(n, k) is of the ‘order of n - 210g k. The second algo- 
rithm generates about 2 n2/4 full cycles of length 2’J, using about n2/2 bits 
of storage. In both algorithms, the time required to produce the next bit 
from the last n bits is close to n. A possible application to the construction 
of stream ciphers is indicated. 

I. INTRODUCTION 

T HIS paper deals with the construction of full-length 
nonlinear shift-register cycles, also referred to as de 

Bruijn sequences. A comprehensive survey of past work on 
this subject can be found in [l]. The common approach to 
this construction is to consider a shift-register producing 
many short cycles, e.g., the pure cycling register, which are 
then joined together to form a full cycle. 

The same practice is follbwed in this paper. We propose 
two methods of constructing full cycles. One produces full 
cycles by joining those generated by the pure cycling 
register (PCR); the other employs the pure summing reg- 
ister (PSR) for the same purpose. It is well known [2] that 
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the number of full cycles of length 2” is 22”m’-n. The 
various methods proposed so far differ in the number of 
distinct full cycles of same length that the method pro- 
duces, and in the complexity per produced cycle. Fredrick- 
sen [3] shows how to generate 22n-5 full cycles of length 2” 
from a PCR of length n (PCR,) using 6n bits of storage, 
and n units of time to produce the next cycle bit from the 
last n bits. 

In Section III of this paper, we show how to construct 
2k .&a> k, full cycles of length 2” from those of PCR, using 
3n + k . g(n, k) bits of storage, where k is a constant in 
the range 1 I k I 2 cnp4)12, g(n, k) is approximately (n - 
210g k)(l - (l/(1 + log k))), and logarithms are taken to 
the base 2. The time required to produce the next bit from 
the last n bits is o(n), as n + co. 

In Section IV, we propose a method of constructing full 
cycles by joining the cycles of a PSR. To the best of the 
authors’ knowledge, this is the first method employing the 
PSR. We show how to produce about 2”*j4, or more 
exactly, 

‘yy ( nFkl) 

full cycles of length 2” using about n2/2 bits of storage 
and o(n) units of time to produce the next bit. 
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The number  of full cycles and the amount  of stored 
information required to generate them via the proposed 
algorithms, make it worthwhile to consider their use in 
cryptographic applications, The  ma in problem in the de- 
sign of a  stream cipher [4] is the construction of the key 
stream from a  so-called “key seed.” In our case, the full 
cycle acts as the key stream, while the stored information 
required to run the algorithm plays the role of the key seed. 
The  full cycles produced by the proposed algorithms possess 
some of the important properties desired of key streams. 
For instance, the number  of distinct keys is exponential in 
the length of the seed which, in the algorithm of Section 
III, depends on  a  controllable parameter k. 

In addition any full cycle has many of the randomness 
properties [5] and  a  large linear span [6] required of key 
streams. 

II. THE JOINING OF CYCLES 

A feedback shift-register (FSR) of length IZ has 2” states 
corresponding to the set B” of all binary n-tuples. The  
feedback function f(x), x = (xl,xZ;.., xn) E B”, of the 
FSR induces a  mapp ing F: B” + B” under which xF = y, 
where 

Y; = xi+l> i= I,..., n - 1, and  y, =f(x). 
The  conjugate 2 and the companion x’ of a  state x = 

(x1, -9, * * * > x,) are defined by 
2  = (Xl @  1, X2,‘. 0) XJ, 

x’ = (Xl,. . . , q-1, x, @  l), 
where $  denotes modu lo 2  addition. 

A k-cycle C of a  FSR is a  (cyclic) sequence of k distinct 
states C = (x1,x2; ..,xk), xi E B”, such that xi = x,F 
and xi+i = xiF, i = 1,2;. ., k - 1. The  state diagram of 
a  FSR is called a  factor if each state belongs to a  cycle. 
Two cycles C, and  C, are said to be  adjacent if they are 
(state) disjoint and  there exists a  state x on  C, whose 
conjugate 2  or companion x’ is on  C,. 

Theorem 1 [5]: Two adjacent cycles C, and  C,, with x 
on  C, and  2(x’) on  C,, are joined into a  single cycle when 
the successors (predecessors) of x and  2  (x’) are inter- 
changed.  

Example I: Consider the PCR, with f(x,, x2, x3) = xi. 
Its state diagram is the factor of F ig. l(a). Its four cycles 
are 

Cl = (OOO), 
c, = (001,010, loo), 
c, = (011,110, lOl), 
c, = (111). 

C, and  C, are adjacent, with 000  being the conjugate of 
100. Similarly, C, and  C, are adjacent, with 010  being the 
companion of 011. Applying Theorem 1  to, say, C, and  C, 
we obtain the cycle C = (001,011,110,101,010,100). The  
new factor; consisting of C,, C, and  C,, is shown in F ig. 
l(b). 
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Fig. 1. The factors of Example 1. 

III. CONSTRUCTION OF FULL CYCLES FROM PCR, 

The  PCR, is an  n-stage FSR whose feedback function 
f(x,, X2,’ * *9 x,) = xi. It is well known [5] that the length 
of a  cycle from PCR, is a  divisor of II. 

The  weight W(S) of a state S is the number  of ONES in 
s = (Sl, s2; . 0) sn), i.e., W(S) = C;=isi. 

Clearly, states belonging to the same cycle of PCR, have 
the same weight. 

The  weight W(C) of a cycle C from PCR, is the weight 
of each of its states. 

Fredricksen [3] shows how to join the cycles of PCR, to 
form a  full cycle of length 2”. There are four possibilities 
for consecutive states on  a  full cycle (or any other cycle) of 
a  FSR: 

In a) and  b) both states come from the same PCR, cycle. 
In c) the weight of the second state exceeds by 1  that of the 
first state. In d) the weight of the first state exceeds by 1  
that of the second state. Hence, in c) and  d) the two states 
come from different PCR, cycles. 

Lemma 1: Let C, be  a  cycle of weight k > 0  from 
PCR,. Then  there exists a  state S on  C, such that its 
companion S’ is on  a  cycle C, whose weight is k - 1. 

Proof: Since W(C,) > 0  there exists a  state of the 
form S = (sr;.., s,-r, 1) on  C,. Hence, S’ = 
(Sl,’ * -9 s~-~,O) and  W(S’) = W(S) - 1  = k - 1. There- 
fore S’ is on  a  PCR, cycle C,, with W(C,) = k - 1. 

Q .E.D. 

Lemma 1  and Theorem 1  lead to a  simple way of 
constructing a  full cycle. At each step we have a  main 
cycle, obtained by joining a  subset of PCR, cycles, and  the 
remaining PCR, cycles. Initially, the ma in cycle is chosen 
to be  the unique PCR, cycle of weight zero. Next, the ma in 
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cycle is extended by joining to it the (unique) cycle of 
weight one. In a general step i, we extend the main cycle 
by joining to it all the PCR, cycles of weight i (in arbitrary 
order). This is always possible because the current main 
cycle contains all of the states whose weight is less than i 
and, since each PCR, cycle of weight i > 1 has a state 
ending in a ONE, it can be joined (see Theorem 1 and 
Lemma 1) to the current main cycle. 

This procedure ends when all the PCR, cycles have been 
joined together. 

We proceed now to a precise and detailed description of 
the proposed construction. 

Consider the ordered set V = {V(i)}::; of k states, 
1 I k I 2((‘-4)/2), constructed as follows: 

1) The first [logk] + 1 bits of V(i) form the base-2 
representation of i. (Note that the first bit is always 
ZERO.) 

2) The last [log kl + 2 bits of each V(i) are ONES 
preceded by a single ZERO. 

3) In positions [log k] + 2 + ([log k] + l)j, for integers 
j satisfying 

Olj< 
I 

n -[logk] -[logk] - 3 
[logk] + 1 1 

each V(i) has a ZERO. 
4) The remaining bits for each V(i) are chosen arbi- 

trarily. 

Example 2: n = 16, k = 8. The set V for these values of 
nand k takes the form 

00000x~1’x~i’x$)0xf)x~‘)01111 
ooo1ox~~~x~~~x~~~ox~~~x~*~o1111 
00100xf)x~~)X~3)OXf)X~3)01111 
oo11ox~“x~~~x~~~ox~~~x~~~ollll 
01000x~5)x~~)x~5)0x~~)x~5)01111 
01010x~~~x~~~x~~~0x~~~x~~~01111 
o11oox~‘~x~‘~x~‘~ox~‘~x~~~o1111 
o111ox~~~x~s~x~*~ox~*~x~s~o1111 

where the xJ”’ are free parameters. 
It can be easily verified that the righthand block of 

[log k] + 1 ONES form the unique largest run of ONES in 
each V(i), and that every pair of states differ in their first 
[log k] + 1 bits. Therefore we have Lemma 2. 

Lemma 2: No two states of V belong to the same cycle 
of PCR,. 

The construction of a full cycle from the PCR, cycles 
proceeds by a sequence of joins where at each step a cycle 
of least weight from among the remaining PCR, cycles is 
joined to the current main cycle. A join is performed by 
means of a pair of companion states S and S’, with S on 
the next PCR, cycle C in line and S’ on the current main 
cycle. The states S and S’ are called the bridging states of 
the join. The bridging state S on C is determined as 
follows: if C contains a state from Y then it is chosen as 
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the bridging state of C. Otherwise, the choice of S is as in 
Fredrickson [3], [7]. Let M be the state on C whose value 
]M], when viewed as a number in base-2 notation is maxi- 
mal. If ]M] = 1. 2’, where I is odd and r 2 0, then the 
state S such that ]SI = 1 is also on C, and we take S to be 
the bridging state of C. 

In any case the chosen bridging state S for the current 
PCR, cycle C always ends in a ONE. By Lemma 1, its 
companion S’ belongs to a PCR, cycle whose weight is 
smaller than that of C. Therefore, S’ must be on the 
current main cycle. By Theorem 1, interchanging the pre- 
decessors of S and S’ will create the next main cycle by 
joining the current one with C. 

A full cycle obtained by joining PCR, cycles as de- 
scribed above, can be generated bit-by-bit following a 
procedure based on the underlying rules for the joining of 
cycles. In this procedure, the (i + n)th bit bi+n of the full 
cycle is determined from the preceding n-bit state pi = 
(bi, bi+l,e . ‘3 b,, n- r). If pi served as a predecessor of a 
bridging state (S or S’) then bi+n = bj $ 1; otherwise, 
bi+n = bi. The formal steps for determining bi+n are pre- 
sented in the following algorithm. 

Algorithm Al Choose a constant k such that 1 I k I 
2((“-4)/2). Choose and store an ordered set of bridging 
states V = { V(i)}F:t+. Initially, set PO = (0, 0, . . +, 0) = 0”. 
Given pi = (bi, bi+l,. . ., bi + n _ i), proceed to produce pi + i 
= (&+I,. . .> bj+n-l, b,,,) as follows. 

(Al) Examine the cyclic shifts of /3: = (bi+l,. . . , 
bj+n-l, 1) for the existence of a shift a that begins 
with a ZERO and ends with 1 + [log k] ONES. If 
no such (Y exists go to (A3). 

(A2) Let (x* be the first 1 + [log k] bits of (Y and let 
]a*] = j, the base-2 value of (Y*. If j > k - 1 go to 
(A3); otherwise, if (Y = V(j) = Pt go to (A5); if 
a = V(j) # pi* go to (A4). 

(A3) Let M be the cyclic shift of /3: with the largest 
base-2 value /MI = 1. 2’, I odd, r 2 0. Let S be 
the shift of /3: such that IS] = 1. If S = & go to 
(A9 

(A4) Set bi+,, = bi and stop. 
(A5) Set bi+n = bi @ 1. 

Theorem 2: a) For every choice of k, in the indicated 
range, and of the set V Algorithm A produces a full cycle 
of length 2”. 

b) For a given choice of k there are 2k.g(n9k) distinct 
choices for the set I’, where 

g(n, k) = n - 3 - [logk] - [logk] 

_ n - 3 -[logk] -[logkj 
I [logk] + 1 

thus, Algorithm A can be used to produce 2k.g(n,k) distir 
full cycles. 

1; 
1ct 

c) The working space that Algorithm A requires to 
produce a full cycle is 3n + k . g(n, k) bits and the work 
required to produce the next bit is 2n cyclic shifts and 
about the same number of n-bit comparisons. 
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Proof: a) follows directly from the discussion preced- 
ing Algorithm A. 

b) is due  to the fact that each V(i) is specified up  to 
exactly g( n, k) free parameters and  that no  state except for 
on-“l”, a  = 1  + [lo@], may serve as a  bridging state via 
both of the two criteria: either by being a  member  of the 
set V or by representing the odd part of a  maximal shift. 
This, together with Lemma 2, imply that distinct choices 
for the set I’ correspond to distinct sets of bridging states 
and, hence, to distinct full cycles. 

c) follows directly from Algorithm A. Note that only 
information about members of the set v has to be  stored 
and, there, only the g(n, k) free bit-values of each V(i) 
require storage. Q .E.D. 

IV. CONSTRUCTIONOFFULLCYCLESFROM PSR, 

The  PSR, is an  n-stage FSR whose feedback function 
f(x,, X2,’ * *9 x,) = Xl $  x2 CB *. * CBX,. 

An extended representation E(C) of a  cycle C of PSR, is 
given by an  (n + 1)-tuple [x0x1 . .. x,-ix,] where 
(xc), X1,’ * *> x,-i) is a  state on  C and x, = x0 @  xi 
cI3 *** $X,-l. 

The  extended weight W ,(C) of C is defined as the 
number  of ONES in E(C) = [x0x1 ... x,-ix,], i.e., 
W ,(C) = .q&Xi. 

The  following lemma is an  immediate result of the above 
definitions. 

Lemma 3: For every cycle C from PSR, we have 
W ,(C) = 2k, for some 0  2  k I I( n + 1)/2], and  for each 
state S on  C 2k - 1 I W(S) I 2k. 

Cis called a  run-cycle if all the ONES in E(C) form a  
cyclic run. 

For each cycle C of PSR,, with W ,(C) = 2k < II + 1; 
we define a  unique preferred state P(C). For a  run-cycle, 
P(C) = (12k0”-2k); for a  cycle with more than one (cyclic) 
run of ONES the preferred state is defined as follows. 

Let E*(C) = [O’l’Ob, . . . b,-,-,-JO] be the unique ex- 
tended representation of C which satisfies the following 
properties: 

a) r20; 
b) t is the length of the longest run of ONES; 
c) among all extended representations of this form, with 

the same maximal t, E*(C) is the largest when viewed 
as a  number  in base-2 notation. 

Then,  the preferred state for C is P(C) = (O’l’Ob, * . . 
4-,-,-J). 

Lemma 4: Let C, be  a  nonrun-cycle from PSR, and let 
P(C,) = (O’l’lOb, . . . bnptl-r-21). Then the states B = 
(lO’l’~Ob, . . . bnprlprp2) and the companion of P(C,) are 
on  a  cycle C, #  C,, with W ,(C,) = W ,(C,). Furthermore, 
if t, is the length of the longest run of ONES in P(C,) 
then either t, = t, + 1, or t, = t, and IP( > IP(C,)l. 

Proof: Clearly W(B) = W(P(C,)) = W&C,) = 2k 
for some k. Hence, by Lemma 3, W ,(C,) = 2k = W ,(C,). 
It is also clear that E(C,) = [10’1’10b, * + - bn-tl-r-20]. 
Hence, if r = 0, t, = t, + 1; if r > 0, then an  alternate 

extended representation of C, is given by E’(C,) = 
[Or-‘lh()b, . . . b, _ rl _  r- ,OlO], which implies 

IP( 2 l(O’-llrlOb, * *. bn-+e201) 1  ’ IP(C 

Thus, in any case C, #  C, and, since the two possible 
successors of B are P(C,) and the companion of P(C,), it 
follows that the companion of P(C,) is the successor of B 
on C,. Q .E.D. 

Lemma 5: Let U = (ui;.., u,-i,l) be  a  state on  a  
cycle C, of PSR, with W(U) + 1 = W ,(C,) = 2k for some 
k 2 1. Then  the companion U’ of U is on  a  PSR, cycle C, 
with W ,(C,) = 2k - 2. 

Proof: This lemma follows directly from the defini- 
tion of U’ and Lemma 3. Q .E.D. 

Lemmas 3, 4, 5  lead to a  construction of a  large class of 
full cycles from those of PSR,. Lemma 4  suggests a  way of 
joining all cycles with the same extended weight. For each 
extended weight 2k, we start with the run-cycle of this 
weight as an  initial ma in cycle. In each step the current 
ma in cycle is expanded by joining to it the PSR, cycle of 
extended weight 2k with the longest run of ONES; if there 
are two or more cycles with the same longest run of ONES, 
join the one with the largest preferred state. Recalling the 
definition of bridging states in Section III, it is easy to 
verify that this order of joins is always possible if the 
preferred state of the PSR, cycle in line is chosen as a  
bridging state S for the join (the described order guaran- 
tees that its companion S’ belongs to the current ma in 
cycle). 

Once all the PSR, cycles of extended weight 2k are 
joined together into a  corresponding ma in cycle MC,, 
0  I k I [(n + 1)/2], we apply Lemma 5  to joining the 
MC, cycles, in order of increasing k, to form a  full cycle. 

W e  proceed now to describe an  algorithm for producing 
the (i + n)th bit bi+,, of the resulting full cycle from the 
following inputs: 

a) the preceding n-bit state pi = (bi, bi+l,* . *, bi+,-l), 
b) the parity p; of pi, pi = bi @  bi,l @  *e. @bi+,-l> 

and 
c) the weight W(&) of pi. 

The  production of bi+,, from the above inputs is based 
on  the fact, that when (x0, xi;.., x,-i) + 
(Xl,. . .> x,~i,x,) then &xi is even if and  only if both 
states are on  the same PSR, cycle. 

Before presenting the formal steps of the algorithm, we 
remind the reader that the preferred state S of each PSR, 
nonrun-cycle and  its companion S’ serve as bridging states 
in the process of forming one of the MC, cycles. In the 
process of joining the MC, cycles into a  full cycle, the 
bridging state S on  the MC, cycle in line, 1  I k 
I 1  (n + 1)/2], can be  chosen as any state of odd  weight 
and  a  trailing ONE; i.e., the bridging state Sck) for MC, 
can be  any state of the form Sck) = ($, $,a * *, s,k-i, 1) 
with W(Sck)) = 2k - 1  (see Lemma 5). 
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In Algorithm B, given below, we first check whether the 
given state pi serves as a predecessor of a bridging state (S 
or S’). If it does, we set bi+n =pi @  1, pi+l = bi @  1, and 
W(&+J = W(&) - b, + (pi @  1); otherwise, bi+, = pi, 

pi+1 = bi> and W(Pi+l) = W(Pi> - bi + Pi* 
Algorithm B: For every k such that 1 I k 

I [(n + 1)/2] h c oose and store a bridging state U(2k) of 
the form U (*k) = ($, &. . .) z&i, 1) with W(C!~(~~)) = 2k 
- 1. Initially, set & = (0,O; * *,O) = O”, p. = 0 W(/3,) = 
0. Given pi = (bi, bi+l,* * a, bi+n-l), pi, wi = W(&) pro- 
ceed to produce&+l = (bi+l>+ * ‘9 bi+n-1, b,+,), Pi+12 Wi+l 
as follows: 

(Bl) If pi @  b, = 1 go to (B3). 
(B2) If (bi+l,..., bi+n-l,l) = U(“+~+*) go to (B6); 

otherwise go to (B5). 
(B3) If &+ = [bi+l ..a bi+ no ,101 is a run-cycle go to 

(B5); otherwise, find the cyclic shift EF = [O’l’Ob, 
-.. be- n f ,.+,+310] of &+ whose first n bits form a 

choose the set { U(2k)} is 

c) follows directly from Algorithm B. It is clear that 
most of the work consists of finding the preferred state of 

/3; = [ b,+l . . . bi+,-$01 = [O’ll’lXilO] 

in (B3). Let Ei* be the shift of &+ whose first n bits form a 
preferred state. Initially, El* = /3:. Given E* = 
[Or~lf2X210] and a shift E: = [Or31f3Xs10] of BP, set ,?$ = 
ET if either t, > t,, or t, = t, and IETl > /EFI. After n 
shifts EF will have the required form. Q.E.D. 

Example 3: For n = 6, and the bridging states 

preferred state. uC2) = (0, 0, o,o, 0, l), 
(B4) If E; = & go to (B6). 
(B5) Set bi+,, =pi, pi+l = bi, wi+i = wi - b, +pi, and uC4)= (1,0,1,0,0,1), 

stop. u@)= (l,l,O,l,l,l), 
036) Set b,+, = pi $ 1, pi+l = bi @  1, wi+i = w, - bi 

+ (Pi @  1). 
the full successive bits of one period of the full cycle 
generated by Algorithm B are 

Theorem 3: a) For every choice of the set of states 
{ U(2k)}L$+1)/21 Algorithm B produces a full cycle of 
length 2”. 

00000011000010100111000111100110 
11111101100101110101011010001001. 

b) There are It should be noted that a similar algorithm can be 
derived for the complement of the PSR,, i.e., the FSR with 
the feedback function f(xl, x2; --, xn) = x1 CB x2 
%3 . . . 63x, @  1. 
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