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Sequence Folding, Lattice Tiling, and
Multidimensional Coding
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Abstract—Folding a sequence into a multidimensional box is
a well-known method which is used as a multidimensional coding
technique. The operation of folding is generalized in a way that
the sequence can be folded into various shapes and not just a
box. The novel definition of folding is based on a lattice tiling for
the given shape and a direction in the -dimensional integer
grid. Necessary and sufficient conditions that a lattice tiling for
combined with a direction define a folding of a sequence into
are derived. The immediate and most impressive applications are
some new lower bounds on the number of dots in two-dimensional
synchronization patterns. Asymptotically optimal such patterns
were known only for rectangular shapes. We show asymptotically
optimal such patterns for a large family of hexagons. This is
also generalized for multidimensional synchronization patterns.
The best known patterns, in terms of dots, for circles and other
polygons are also given. The technique and its application for
two-dimensional synchronization patterns, raises some interesting
problems in discrete geometry. We will also discuss these problems.
It is also shown how folding can be used to construct multidimen-
sional error-correcting codes. Finally, by using the new definition
of folding, new types of multidimensional pseudo-random arrays
with various shapes are generated.

Index Terms—Distinct difference configuration, folding, lattice
tiling, pseudo-random array, two-burst-correcting code.

I. INTRODUCTION

M ULTIDIMENSIONAL coding in general and two-di-
mensional coding in particular are subjects which

attract lot of attention in the last three decades. One of the main
reasons is their modern applications which have developed
during these years. Such applications for synchronization
patterns include radar, sonar, physical alignment, and time-po-
sition synchronization. For error-correcting codes they include
two-dimensional magnetic and optical recording as well as
three-dimensional holographic recording. These are the storage
devices of the future. Applications for pseudo-random arrays
include scrambling of two-dimensional data, two-dimensional
digital watermarking, and structured light patterns for imaging
systems. Each one of these structures (multidimensional
synchronization patterns, error-correcting array codes, and
pseudo-random arrays), and its related coding problem, is a
generalization of an one-dimensional structure. But, although
the related theory of the one-dimensional case is well developed,
the theory for the multidimensional case is developed rather
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slowly. This is due that the fact the most of the one-dimensional
techniques are not generalized easily to higher dimensions.
Hence, specific techniques have to be developed for multidi-
mensional coding. One approach in multidimensional coding
is to take an one-dimensional code and to transform it into
a multidimensional code. One technique in this approach is
called folding and it is the subject of the current paper. This
technique was applied previously for two-dimensional syn-
chronization patterns, for pseudo-random arrays, and lately for
multidimensional error-correcting codes. We start with a short
introduction to these three multidimensional coding problems
which motivated our interest in the generalization of folding.
Synchronization patterns

One-dimensional synchronization patterns were first intro-
duced by Babcock in connection with radio interference [1].
Other applications are discussed in details in [2] and some more
are given in [3] and [4]. The two-dimensional applications and
related structures were first introduced in [5] and discussed in
many papers, e.g., [6]–[10]. The two-dimensional problems has
also interest from discrete geometry point of view and it was
discussed for example in [11] and [12]. Recent new applica-
tion in key predistribution for wireless sensor networks [13] led
to new related two-dimensional problems concerning these pat-
terns which are discussed in [14] and [15]. It has raised the fol-
lowing discrete geometry problem: given a regular polygon with
area on the square (or hexagonal) grid, what is the maximum
number of grid points that can be taken, such that any two lines
connecting these grid points are different either in their length or
in their slope. Upper bound technique based on an idea of Erdös
and Turán [11], [16] is given in [14]. Some preliminary lower
bounds on the number of dots are also given in [14], where the
use of folding is applied. Folding for such patterns was first used
by [10]. An one-dimensional ruler was presented as a binary se-
quence and written into a two-dimensional array row by row,
one binary symbol to each entry of the array. This was general-
ized for higher dimensions, say array, by first parti-
tioning the array into two-dimensional arrays of size .
The one-dimensional sequence is written into the these
arrays one by one in the order defined by the three-dimensional
array. To each of these arrays the sequence is written
row by row. Folding into higher dimensions is done similarly
and can be defined recursively. This technique was used in [10]
to generate asymptotically optimal high dimensional synchro-
nization patterns.
Error-correcting codes

There is no need for introduction to one-dimensional
error-correcting codes. Two-dimensional and multidimensional
error-correcting codes were discussed by many authors, e.g.,
[17]–[27]. Multidimensional error-correcting codes are of
interest when the errors are not random errors. For correction of

0018-9448/$26.00 © 2011 IEEE



4384 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

up to random errors in a multidimensional array, we can con-
sider the elements in the array as an one-dimensional sequence
and use a -error-correcting code to correct these errors. Hence,
when we talk about multidimensional error-correcting codes
we refer to the errors as special ones such as the rank of the
error array [28], [29], or crisscross patterns [29]–[31], etc. An
important family of multidimensional error-correcting codes
are the burst-error-correcting codes. In these codes, we assume
that the errors are contained in a cluster whose size is at most .
The one-dimensional case was considered for more than forty
years. Fire [32] was the first to present a general construction.
Optimal burst-correcting codes were considered in [33]–[35].
Generalizations, especially for two-dimensional codes, but
also for multidimensional codes were considered in various
research papers, e.g., [18], [19], [22], [23], [25], [27]. Folding
of one-dimensional codes were considered for two-dimen-
sional error-correcting codes in [20], [24] and optimal codes
were constructed by a combination of folding and interleaving
in [26]. In other papers, one-dimensional burst-correcting
codes and error-correcting codes, were transferred into two-di-
mensional codes, e.g., [21]–[23], [25]–[27]. Colorings for
two-dimensional coding, which transfer one-dimensional codes
into multidimensional arrays were considered for interleaving
schemes [22] and other techniques [27]. These colorings can
be compared to the coloring which will be used in the sequel
for folding. There is another related problem of generating an
array in which burst-errors can be corrected on an unfolded
sequence generated from the array [36]–[40].
Pseudo-random arrays

The one-dimensional pseudo-random sequences are the
maximal length linear shift register sequences known as M-se-
quences and also pseudo-noise (PN) sequences [41]. These
are sequences of length generated by a linear feedback
shift-register of order . They have many desired properties
such as follows.

• Recurrences Property—the entries satisfy a recurrence re-
lation of order .

• Balanced Property— entries in the sequence are ones
and entries in the sequence are zeros.

• Shift-and-Add Property—when a sequence is added bit-
wise to its cyclic shift another cyclic shift of the sequence
is obtained.

• Autocorrelation Property—the out-of-phase value of the
autocorrelation function is always .

• Window Property—each nonzero -tuple appears exactly
once in one period of the sequence.

There are other properties which we will not mention [42]. For
a comprehensive work on these sequences the reader is referred
to [41]. Related sequences are the de Bruijn sequences of length

which are generated by nonlinear feedback shift-register of
order . These sequences have the window property, i.e., each

-tuple appears exactly once in one period of the sequence.
The two-dimensional generalizations of pseudo-noise and

de Bruijn sequences are the pseudo-random arrays and perfect
maps [42]–[47]. Pseudo-random arrays were also called linear
recurring arrays having maximum-area matrices by Nomura,
Miyakawa, Imai, and Fukuda [43] who were the first to con-
struct them. Perfect maps and pseudo-random arrays have been

used in two-dimensional range-finding, in data scrambling,
and in various kinds of mask configurations. More recently,
pseudo-random arrays have found other applications in new
and emerging technological areas. One such application is
robust, undetectable, digital watermarking of two-dimensional
test images [48], [49]. Another interesting example is the use
of pseudo-random arrays in creating structured light, which
is a new reliable technique for recovering the surface of an
object. The structured-light technique is based on projecting
a light pattern and observing the illuminated scene from one
or more points of view [50]–[53]. As mentioned in these
papers, this technique can be generalized to three dimensions;
hence, constructions of three-dimensional perfect maps and
pseudo-random arrays are also of interest.

The main goal of this paper is to generalize the well-known
technique, folding, for generating multidimensional codes of
these types, synchronization patterns, burst-correcting codes,
and pseudo-random arrays. The generalization will enable to ob-
tain the following results:

1) form new two-dimensional codes for these applications;
2) generalize all the multidimensional codes for any number

of dimensions in a simple way;
3) form some optimal codes not known before;
4) make these codes feasible not just for multidimensional

boxes, but also for many other different shapes;
5) solve the synchronization pattern problem as a discrete ge-

ometry problem for various two-dimensional shapes, and
in particular regular polygons.

It is important to note that folding which was used in other
places in the literature aim only at one goal. Our folding aim is
at several goals. Even so, our description of folding is simple
and very intuitive for all these goals.

The rest of this paper is organized as follows. In Section II
we define the basic concepts of folding and lattice tiling. Tiling
and lattices are basic combinatorial and algebraic structures. We
will consider only integer lattice tiling. We will summarize the
important properties of lattices and lattice tiling. In Section III
we will present the generalization of folding into multidimen-
sional shapes. All previous known folding definitions are spe-
cial cases of the new definition. This novel definition involves a
lattice tiling and a direction. We will prove necessary and suffi-
cient conditions that a lattice with a direction define a folding.
We first present a proof for the two-dimensional case since it
is the most applicable case. We continue to show the general-
ization for the multidimensional case. For the two-dimensional
case the proof is slightly simpler than the slightly different proof
for the multidimensional case. In Section IV we give a short
summary on synchronization patterns and present basic theo-
rems concerning the bounds on the number of elements in such
patterns. In Section V we apply the results of the previous sec-
tions to obtain new type of synchronization patterns which are
asymptotically either optimal or almost optimal. In particular
we show how to construct asymptotically optimal patterns for
a large family hexagonal shapes, something which was pre-
viously known only for rectangular shapes. In Section VI we
discuss folding in the hexagonal grid and present a construc-
tion for synchronization patterns in this grid with shapes of
hexagons or circles. In Section VII we show how folding can
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be applied to construct multidimensional error-correcting codes.
In Section VIII we generalize the constructions in [42], [43]
to form pseudo-random arrays on different multidimensional
shapes. Conclusion and problems for further research are given
in Section IX.

II. FOLDING AND LATTICE TILING

A. Folding

Folding a rope, a ruler, or any other feasible object is a
common action in every day life. Folding an one-dimensional
sequence into a -dimensional array is very similar, but there
are a few variants. First, we will summarize three variants for
folding of an one-dimensional sequence into a two-dimensional
array . The generalization for a -dimensional array is
straightforward while the description becomes more clumsy.

F1. is considered as a cyclic array horizontally and ver-
tically in such a way that a walk diagonally visits all the en-
tries of the array. The elements of the sequence are written
along the diagonal of the array . This folding works
(i.e., all elements of the sequence are written into the array)
if and only if and are relatively primes.
F2. The elements of the sequence are written row by row
(or column by column) in .
F3. The elements of the sequence are written diagonal by
diagonal in .

Example 1:
Example for F1: Given the M-sequence

of length 15, we fold it into a 3 5 array with a 2 2 window
property (the extra row and extra column are given for better
understanding of the folding).

Example for F2: The following sequence (ruler) of length 13
with five dots is folded into a 3 5 array.

Example for F3: The following -sequence in :
(can be viewed as a cyclic ruler) is folded

into an infinite array (we demonstrate part of the array with
folding into a small rectangle is given in bold). Note, that while

Fig. 1. Folding by diagonals.

the folding is done we should consider all the integers modulo
31 (see Fig. 1).

F1 and F2 were used by MacWilliams and Sloane [42] to
form pseudo-random arrays. F2 was also used by Robinson [10]
to fold a one-dimensional ruler into a two-dimensional Golomb
rectangle. The generalization to higher dimensions is straight
forward. F3 was used in [14] to obtain some synchronization
patterns in .

B. Tiling

Tiling is one of the most basic concepts in combinatorics. We
say that a -dimensional shape tiles the -dimensional space

if disjoint copies of cover .

Remark 1: We assume that our shape is a discrete shape,
i.e., it consists of discrete points of such that there is a path
between any two points of which consists only from points of

. The shape in is usually not represented as a union of
points in , but rather as a union of units cubes in with
vertices in . Let be the set of points in the first representa-
tion. The set of unit cubes by the second representation is

where

and is a vector of length and weight one with a one in the
th position. We omit the case of shapes in which are not of

interest to our discussion.

A cover for with disjoint copies of is called a tiling of
with . For each shape we distinguish one of the points

of to be the center of . Each copy of in a tiling has the
center in the same related point. The set of centers in a tiling
defines the tiling, and hence the tiling is denoted by the pair

. Given a tiling and a grid point
we denote by the center of the copy of for
which . We will also assume that the origin
is a center of some copy of .

Remark 2: It is easy to verify that any point of can serve as
the center of . If is a tiling then we can choose any point
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of to serve as a center without affecting the fact that is
a tiling.

Lemma 1: If is a tiling then for any given
point the point

belongs to the shape whose center is in the
origin.

Proof: Let be the copy of whose center is
in the origin and be the copy of with the point

. Let be the point in
related to the point in . By definition,

and the
lemma follows.

One of the most common types of tiling is a lattice tiling. A
lattice is a discrete, additive subgroup of the real -space .
W.l.o.g., we can assume that

(1)

where is a set of linearly independent vectors
in . A lattice defined by (1) is a sublattice of if and
only if . We will be interested solely
in sublattices of since our shapes are defined in . The
vectors are called a base for , and the

matrix

...
...

. . .
...

having these vectors as its rows is said to be a generator matrix
for .

The volume of a lattice , denoted by , is inversely pro-
portional to the number of lattice points per unit volume. More
precisely, may be defined as the volume of the funda-
mental parallelogram in , which is given by

There is a simple expression for the volume of , namely,
.

We say that is a lattice tiling for if the lattice points can
be taken as the set to form a tiling . In this case we
have that .

There is a large variety of literature about tiling and lattices.
We will refer the reader to two of the most interesting and com-
prehensive books [54], [55].

Remark 3: Note, that different generator matrices for the
same lattice will result in different fundamental parallelograms.
This is related to the fact that the same lattice can induce a tiling
for different shapes with the same volume. A fundamental par-
allelogram is always a shape in which is tiled by (usually
this is not a shape in and as a consequence, most and usually
all, of the shapes in are not fundamental parallelograms).

Lattice is a very fundamental structure in various coding
problems, e.g., [56]–[58] is a small sample which does not
mean to be representative. Lattices are also applied in mul-
tidimensional coding, e.g., [22]. This paper exhibits a new

application of lattices for multidimensional coding and for
discrete geometry problems. To conclude this section we give
the following lemma whose proof is left as an exercise to the
reader.

Lemma 2: Let be a -dimensional lattice, with a generator
matrix , and be a -dimensional shape. is a lattice tiling
for if and only if and there are no two points

and in any copy of such that
is a lattice point.

III. THE GENERALIZED FOLDING METHOD

In this section, we will generalize the definition of folding.
All the previous three definitions (F1, F2, and F3) are special
cases of the new definition. The new definition involves a lattice
tiling , for a shape on which the folding is performed.

A direction of length , is a nonzero in-
teger word of length , where .

Let be a -dimensional shape and let
be a direction of length . Let be a lattice tiling for a shape ,
and let be the copy of , in the related tiling, which includes
the origin. We define recursively a folded-row starting in the
origin. If the point is the current point of in
the folded-row, then the next point on its folded-row is defined
as follows:

• If the point is in then it
is the next point on the folded-row.

• If the point is in
whose center is in the point then

is the next point on
the folded-row (by Lemma 1 this point is in ).

The new definition of folding is based on a lattice , a shape
, and a direction . The triple defines a folding if the

definition yields a folded-row which includes all the elements
of . It will be proved that only and determine whether the
triple defines a folding. The role of is only in the
order of the elements in the folded-row; and of course must
define a lattice tiling for . Different lattice tilings for the same
shape can function completely different in this respect. Also,
not all directions for the same lattice tiling of the shape should
define (or not define) a folding.

Remark 4: It is not difficult to see that the three folding de-
fined earlier (F1, F2, and F3) are special cases of the new defini-
tion. The definition of the generator matrices for the three corre-
sponding lattices are left as an exercise to the interested reader.

How many different folded-rows do we have? In other words,
how many different folding operations are defined in this way? It
can readily verified that there are at most different folded-
rows. If with the direction defines a folding
then also with the direction vector de-
fines a folding. The two folded-rows are in reverse order, and
hence they will be considered to be equivalent. If two folded-
rows are not equal and not a reverse pair then they will con-
sidered to be nonequivalent. The question whether for each ,
there exists a -dimensional shape with nonequiva-
lent folded-rows will be partially answered in the sequel.
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How do we fold a sequence into a shape ? Let be a lattice
tiling for the shape for which . Let be a direction for
which defines a folding and let be
a sequence of length . The folding of induced by
is denoted by and is defined as the shape with the
elements of , where is in the th entry of the folded-row of

defined by .
Next, we aim to find sufficient and necessary conditions that

a triple defines a folding. We start with a simple char-
acterization for the order of the elements in a folded-row.

Lemma 3: Let be a lattice tiling for the shape and let
be a direction. Let

and let be two integers. Then
if and only if .

Proof: The lemma follows immediately from the observa-
tion that if and only if and

are the same related positions in , i.e.,
correspond to the same position of the folded-row.

The next two lemmas are an immediate consequence of the
definitions and provide a concise condition whether the triple

defines a folding.

Lemma 4: Let be a lattice tiling for the shape and let
be a direction. defines a folding

if and only if the set
contains distinct elements.

Proof: The lemma is an immediate consequence of
Lemmas 1, 3, and the definition of folding.

Lemma 5: Let be a lattice tiling for the shape and let
be a direction. defines a folding

if and only if
and for each we have

.
Proof: Assume first that defines a folding. If for

some we have
then and hence by Lemma 3 the

folded-row will have at most elements of . Since we
will have that does not define a folding. On the other
hand, Lemma 3 also implies that if defines a folding
then .

Now assume that
and for each , we have

. Let
; if then by Lemma 3 we have

, a contradiction. Therefore, the
folded-row contains all the elements of and hence by defini-
tion defines a folding.

Corollary 1: If , defines a
folding then the point is a lattice point.

Before considering the general -dimensional case we want
to give a simple condition to check whether the triple
defines a folding in the two-dimensional case.

Lemma 6: Let be the generator matrix of a lattice and let
. Then the points , and

are lattice points.

Proof: It is sufficient to prove that the points
are lattice points. Let be a lattice whose generator matrix is
given by

i.e., . Since
and , it follows that

are lattice points.

Theorem 1: Let be a lattice whose generator matrix is given
by

Let and be two positive integers and . If
defines a lattice tiling for the shape then the triple

defines a folding as follows:
• with the direction if and only if

and ;
• with the direction if and only if

and ;
• with the direction if and only if

and ;
• with the direction if and only if

and .
is taken in a way that the parameters in the term “ ”

are nonzero for the related direction.
Proof: We will prove the case where ; the

other three cases are proved similarly.
Let be a lattice tiling for the shape . By Lemma 6 we have

that is a lattice point. Therefore, there exist
two integers and such that

, i.e.,
, and . These equations have exactly

one solution, and . By
Lemma 5, defines a folding if and only if

and for each we have
.

Assume first that and
. Assume for the contrary, that there

exist three integers , and , such that
. Hence we have,

. Since
it follows that and , for
some . Therefore, we have

, i.e., . But, since it follows
that , for some integer , a contradiction to the
fact that . Hence, our assumption on the existence
of three integers , and is false. Thus, by Lemma 5
we have that if and

then defines a folding with the
direction .

Assume now that defines a folding with
the direction . Assume for the con-
trary that or

. We distinguish now between two
cases.
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Case 1: If then
and are integers. There-

fore, . Hence,

is an integer and for the integers and
we have

, i.e., is a lattice point, and as
a consequence by Lemma 5 we have that does not
define a folding, a contradiction.
Case 2: If then let
and . Hence,

. Clearly, , and are integers, and as
a consequence by Lemma 5 we have that does not
define a folding, a contradiction.

Therefore, if defines a folding with the direction
then and
.

The generalization of Theorem 1 for the -dimensional case
is Theorem 16 given in Appendix A. The most important types
of directions (used for F1, F2, and F3), are those in which the
points and , where is the direction, are adjacent for
any given point , i.e., if then
for each . For these types of directions we have the
following result.

Corollary 2: Let be a lattice whose generator matrix is
given by

If defines a lattice tiling for the shape then the triple
defines a folding

• with the direction if and only if
;

• with the direction if and only if
;

• with the direction if and only if
;

• with the direction if and only if
.

is taken in a way that the parameters in the term “ ”
are nonzero for the related direction.

There are cases when we can determine immediately without
going into all the computations, whether defines a
folding. It will be a consequence of the following lemmas.

Lemma 7:
• The number of elements in a folded-row does not depend

on the point chosen to be the center of .
• The number of elements in a folded-row is a divisor of

.
Proof: By Lemmas 3 and 5 and the definition of the folded-

row, if we start the folded-row in the origin then the number
of elements in the folded-row is the smallest such that
is a lattice point (since the folded-row starts at a lattice point
and ends one step before it reaches again a lattice point). This

implies that the number of elements in a folded-row does not
depend on the point of chosen to be the center of . We can
make any point of to be the center of and hence any point
can be at the origin. Therefore, all folded-rows with the direction

have elements. For a given lattice and a direction , any
two folded-rows are either equal or disjoint. Hence must be
a divisor and does not depend on which point of is the
center.

The next lemma is an immediate consequence from the defi-
nition of a folded-row.

Lemma 8: The number of elements in a folded-row is one if
and only if is a lattice point.

Corollary 3: Let be a lattice tiling for a shape . If the
volume of is a prime number then defines a folding
with any direction , unless is a lattice point.

Lemma 9: Let be a lattice tiling for the shape . Let
be a direction, be a lattice

point, and the point is in the shape whose
center is in the origin. Then the folded-rows defined by the
directions and
are equivalent.

Proof: Follows immediately from the observation that
.

In view of Lemma 9 we should examine only the di-
rections related to the points of whose center is in the origin.
Hence, in the sequel each direction will
have the property that the point will be con-
tained in the copy of whose center is in the origin. One might
puzzle how this relates to the observation that the necessary and
sufficient conditions that a direction defines a folding depend
only on the generator matrix of and not on ? The answer is
that the folded-row itself is defined on the elements of . There-
fore, will have different directions and folded-rows depending
on the shape .

Lemma 10: Let be a lattice tiling for the shape
. Let be a direction and

let be its folded-row, where
and . Then the direction defines
a folding if and only if . If the direction
defines a folding then its folded-row is , where
indices are taken modulo .

Proof: By definition and by Lemma 3 we have that
and

.
Since the sequence consists of distinct points of

, it follows that the sequence consists of
distinct points of if and only if . Thus, the
lemma follows.

Corollary 4: Let be a lattice tiling for the shape . There
exists at least one folding with respect to if and only if the
number of nonequivalent folding operations with respect to is

, where is the Euler function.
By considering Corollary 3, we obtain the following

corollary.
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Corollary 5: Let be a lattice tiling for the shape . If
is a prime number then there exists different directions
which form nonequivalent folded-rows.

Corollary 4 implies that once we have one folding operation
with its folded-row, then we can easily find and compute all the
other folding operations with their folded-rows. It also implies
that once the necessary and sufficient conditions for the exis-
tence of one folding in the related theorems are satisfied, then
the necessary and sufficient conditions for the existence of other
foldings are also satisfied. Nevertheless, there are cases in which
no direction defines a folding.

Lemma 11: Let a positive integer greater than one,
, be nonzero integers, and be nonzero

integers such that either or , for each
, and . Let be a -di-

mensional shape and be a lattice tiling for whose generator
matrix is given by

...
...

. . .
...

Then there is no direction for which the triple defines
a folding.

Proof: Let be any direction and let
. Then, and for any given shape for

which is a lattice tiling we have
. Hence, by Lemma

5, the triple does not define a folding.

IV. BOUNDS ON SYNCHRONIZATION PATTERNS

Our original motivation for the generalization of the folding
operation came from the design of two-dimensional synchro-
nization patterns. Given a grid (square or hexagonal) and a shape

on the grid, we would like to find what is the largest set of
dots on grid points, , located in , such that the fol-
lowing property hold. All the lines between dots in are
distinct either in their length or in their slope. Such a shape
with dots is called a distinct difference configuration (DDC). If

is an array with exactly one dot in each row and each
column then is called a Costas array [5]. If is a array
with exactly one dot in each column then is called a sonar se-
quence [5]. If is a DDC array then is called a Golomb
rectangle [7]. These patterns have various applications as de-
scribed in [5]. A new application of these patterns to the design
of key predistribution scheme for wireless sensor networks was
described lately in [13]. In this application the shape might
be a Lee sphere, an hexagon, or a circle, and sometimes another
regular polygon. This application requires in some cases to con-
sider these shapes in the hexagonal grid. F3 was used for this
application in [14] to form a DDC whose shape is a rectangle
rotated in 45 degrees on the square grid (see Fig. 1). Hence-
forth, we assume that our grid is , i.e., the square grid for

. Since all the results of the previous sections hold for

-dimensional shapes we will continue to state the results in a
-dimensional language, even so the applied part for synchro-

nization patterns is two-dimensional.
We will generalize some of the definitions given for DDCs

in two-dimensional arrays [14] for multidimensional arrays.
The reason is not just the generalization, but we also need
these definitions in the sequel. Let be a (generally infinite)

-dimensional array of dots in , and let
be positive integers. We say that is a multiperiodic (or
doubly periodic if ) with period if

. We define the
density of to be , where is the number of dots
in any subarray of . Note that the period

might not be unique, but that the density of
does not depend on the period we choose. We say that a multi-
periodic array of dots is a multiperiodic
DDC if every subarray of is a DDC.

We write for the shifted copy
of . We say

that a multiperiodic array is a multiperiodic -DDC if the
dots contained in every shift of form a
DDC.

The definition of the density is given based on periodicity of
a -dimensional box. If is the density, of the multiperiodic
array , it implies that given a shape , the average number of
dots in any shape shifted all over is . This leads to the
following theorem given in [14] for the two-dimensional case
and which has a similar proof for the multidimensional case.

Theorem 2: Let be a shape, and let be a multiperiodic
-DDC of density . Then there exists a set of at least

dots contained in that form a DDC.

Another important observation from the definition of multi-
periodic -DDC is the following lemma from [14].

Lemma 12: Let be a multiperiodic -DDC, and let .
Then is a multiperiodic -DDC.

Let be an infinite sequence of similar shapes such
that . Using the technique of Erdös and Turán [11],
[16], for which a detailed proof is given in [14], one can prove
that

Theorem 3: An upper bound on the number of dots in
, is .

Let and be two-dimensional shapes in the grid. We will
denote by the largest intersection between and
in any orientation. Our bounds on the number of dots in a DDC
with a given shape are based on the following result.

Theorem 4: Assume we are given a multiperiodic -DDC
array with density . Let be another shape on . Then
there exists a copy of on with at least dots.

Proof: Let be the shape such that and
. By Lemma 12, we have that is a multi-

periodic -DDC. By Theorem 2, there exists a set of at least
dots contained in that form a DDC. Thus, there exists

a copy of on with at least dots.
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In order to apply Theorem 4, we will use folding of the se-
quences defined as follows. Let be an Abelian group, and let

be a sequence of distinct ele-
ments of . We say that is a -sequence over if all the
sums with are distinct. For a survey
on -sequences and their generalizations the reader is referred
to [59]. The following lemma is well known and can be readily
verified.

Lemma 13: A subset is a -se-
quence over if and only if all the differences with

are distinct in .

Note that if is a -sequence over and , then so
is the shift . The following theorem,
due to Bose [60], shows that large -sequences over exist
for many values of .

Theorem 5: Let be a prime power. Then there exists a
-sequence over where and

.

A. A Lattice Coloring for a Given Shape

In this section, we will describe how we apply folding to ob-
tain a DDC with a shape and a multiperiodic -DDC. Let be
a lattice tiling for and let be a direction
such that defines a folding. We assign an integer from

, to each point of . The lattice coloring is
defined as follows. We assign 0 to the point and 1
to the next element of the folded-row and so on until
is assigned to the last element of the folded-row. This complete
the coloring of the points in the shape whose center is the
origin. To position we assign the color of posi-
tion . The color of position

will be denoted by .
We will generalize the definition of folding a sequence into a

shape by the direction , given the lattice tiling for . The
folding of a sequence into an array colored by
the elements of is defined by assigning the value to all the
points of the array colored with the color . If the coloring was
defined by the use of the folding as described in this subsection,
we say that the array is defined by . Note, that we
use the same notation for folding the sequence into the shape

. The one to which we refer should be understood from the
context.

Given a point , we say that the set of
points is a
row of defined by . This is also the row
of defined by .

Lemma 14: If the triple defines a folding then in any
row of defined by there are lattice points.

Proof: Given a point and its color
, then by the definitions of the folding and the

coloring we have that
). Hence, the row defined by

has all the values between 0 and in their natural order
modulo . Therefore, any row defined by has lattice points
(which are exactly the points of this row which are colored with
zeros).

Corollary 6: If ,
, and are

four points of then

.
Proof: By Lemma 14 to each one of these four points there

exists a lattice point in its row defined by . Let
• be the

lattice point in the row of ;
• the

lattice point in the row of ;
•

the lattice point in the row of
.

Therefore,

is also a lattice point. is a lattice point in the
row, defined by , of . All these
four points are colored with zeros. Hence,

, and
. Now, the claim

of the corollary is readily verified.

Corollary 7: If is an integer vector of length then
there exists an integer such that for any given point

we have .

Corollary 8: If the triple defines a folding and is a
-sequence over , where , then the array defined

by is multiperiodic.
Proof: Clearly, the array has period and

the result follows.

Theorem 6: If the triple defines a folding and is
a -sequence over , where , then the pattern of dots
defined by is a multiperiodic -DDC.

Proof: By Corollary 8 the constructed array is multi-
periodic.

Since defines a folding it follows that the
colors inside the shape centered at the origin

are all distinct. By Corollary 6, for the four positions
, ,

and we have that

.
Hence, at most three of these integers (colors) are contained in

. It implies that if these four points belong to the same copy
of on the grid then at most three of these points have dots,
since the dots are distributed by the -sequence . Thus, any
shape on will define a DDC and the theorem follows.

Corollary 9: If the triple defines a folding and is
a -sequence over , where , then the pattern of dots
defined by is a DDC.

Note, that the difference between Theorem 6 and Corollary 9
is related to the folding of into and the folding of into

, respectively. The last lemma is given for completeness.
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Lemma 15: If defines a folding then the colors
inside any copy of on are all distinct.

Proof: Let and be two distinct copies of
on . Clearly, . By Corol-
lary 6, for each we have

. Therefore, if contains
distinct colors then also contains distinct colors. The
lemma follows now from the fact that defines a folding
and therefore all the colors in the shape whose center is in
the origin are distinct.

V. BOUNDS FOR SPECIFIC SHAPES

In this section, we will present some lower bounds on the
number of dots in some two-dimensional DDCs with specific
shapes. In the sequel we will use Theorem 4, Theorem 6, and
Corollary 9 to form DDCs with various given shapes and a large
number of dots. To examine how good are our lower bounds on
the number of dots, in a DDC whose shape is , we should
know what is the upper bound on the number of dots in a DDC
whose shape is . By Theorem 3 we have that for a DDC whose
shape is a regular polygon or a circle, an upper bound on the
number of dots is at most , where the shape con-
tains points of the square grid and . One of the main
keys of our constructions, and the usage of the given theory, is
the ability to produce a multiperiodic -DDC, where is a rec-
tangle, the ratio between its sides is close as much as we want to
any given number , and if its area is then the number of dots
in it is . For the construction we will need the well known
Dirichlet’s Theorem [61, p. 27] and the well known Euclidian
Theorem [61, p. 11].

Theorem 7: If and are two positive relatively primes
integers then the arithmetic progression of terms , for

, contains an infinite number of primes.

Theorem 8: If and are two integers such that
then there exist two integers and

such that .

These well known old foundations are used in the following
theorem.

Theorem 9: For each positive number and any , there
exist two integers and such that ; and there
exists a multiperiodic -DDC with, where is an

rectangle, for some
prime , and is an even integer. Each rectangle in
has dots.

Proof: Given a positive number and an , it is easy
to verify that there exist two integers and such that

and . By Theorem 8 there exist
two integers such that either or

.
Assume (the case where

is handled similarly). Clearly, any factor of cannot
divide . Since divides , it follows that a factor
of cannot divide . Hence, .
Therefore, by Theorem 7 there exist infinitely many primes in
the sequence .

Fig. 2. From rectangle to “almost” quasi-regular hexagon with the same lattice
tiling.

Let be a prime number of the form . Now,

.
Thus, a rectangle satisfies the size
requirements for the rectangle of the Theorem.

Let , , ,
and let be an rectangle. Let be the a lattice tiling
for with the generator matrix

where if and if .
By Corollary 2, , defines a folding.

The existence of a multiperiodic -DDC with
dots follows now from Theorems 5 and 6.

The next key structure in our constructions is a certain family
of hexagons defined next. A centroid hexagon is an hexagon
with three disjoint pairs of parallel sides. If the four angles of
two parallel sides (called the bases of the hexagon) are equal
and the four other sides are equal, the hexagon will be called
a quasi-regular hexagon and will be denoted by QRH ,
where is the length of a base, is the distance between the
two bases, and is the length between the two vertices
not on the bases. We will call the line which connects these two
vertices, the diameter of the hexagon (even if it might not be the
longest line between two points of the hexagon). Quasi-regular
hexagon will usually be the shape that will have the role of

when we will apply Theorem 4 to obtain a lower bound on
the number of dots in a shape which usually will be a regular
polygon. In the sequel we will say that , when we means
that .

We want to show that there exists a quasi-regular
hexagon with approximately

dots. By Theorem 9, there exists a doubly
periodic -DCC, where is an

rectangle, such that
for some prime , where is an even integer. The lattice
of Theorem 9 is also a lattice tiling for a a shape , where

is “almost” a quasi-regular hexagon (part
of this lattice tiling is depicted in Fig. 2). By Corollary 2,

, defines a folding for this shape too.
Hence, we obtain a doubly periodic -DCC, where is
“almost” a a quasi-regular hexagon with approx-
imately dots. This construction
implies the following theorem.
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Theorem 10: If then there exists a regular hexagon

with sides of length and approximately dots.

Now, we can give a few examples for other specific shapes,
mostly, regular polygons. To have some comparison between
the bounds for various shapes we will assume that the radius of
the circle or the regular polygons is (the radius is the distance
from the center of the regular polygon to any one its vertices).
We also define the packing ratio as the ratio between the lower
and the upper bounds on the number of dots. The shape that
we use will always be a multiperiodic -DDC on a multiperi-
odic array .

A. Circle

We apply Theorem 4 with a multiperiodic -DDC , where
is a regular hexagon with radius and is a circle with radius
, sharing the same center. The upper bound on the number of

dots in is . A lower bound on the number of dots

in is approximately and hence the density of

is approximately . Let be the angle between two radius

lines to the two intersection points of the hexagon and the circle
on one edge of the hexagon. We have that

and . Thus, a lower bound on the number

of dots in is . The maximum is obtained
when yielding a lower bound of
on the number of dots in and a packing ratio of 0.9637. The
previous best packing ratio was 0.91167 and it was given in [14].

We must note again, that even so this construction works for
infinitely many values of , the density of these values is quite
low. This is a consequence of Theorem 9 which can be applied
for an arbitrary ratio only when the corresponding integers
obtained by Dirichlet’s Theorem are primes. Of course, there
are many possible ratios between the sides of the rectangle that
can be obtained for infinitely many values. A simple example is
for any factorization of we can form an
DDC and from its related quasi-regular hexagons. We won’t
go into details to obtain bounds which hold asymptotically for
any given as we conjecture that the construction for quasi-
regular hexagon can be strengthen asymptotically for almost all
parameters.

B. Regular Polygon

For regular polygons with small number of sides we will use
specific constructions some of which are given in Appendix C.
For some constructions we need DDCs with other shapes like a
Corner and a Flipped T which are defined in Appendix B, where
also constructions of multiperiodic -DDCs for these shapes are
given. If the number of sides is large we will use Theorem 4,
where will be the regular polygon and is a regular hexagon
(for small number of sizes quasi-regular hexagons will be used).
A computer program was developed to compute the packing
ratios, some of which can be obtained by mathematical methods.
Table I presents the results. Finally, we note that the problem
is of interest also from discrete geometry point of view. Some
similar questions can be found in [12].

TABLE I
BOUNDS ON THE NUMBER OF DOTS IN AN �-GON DDC

Fig. 3. The hexagonal model translation.

VI. FOLDING IN THE HEXAGONAL GRID

The questions concerning DDCs can be asked in the hexag-
onal grid in the same way that they are asked in the square grid.
Similarly, they can be asked in dense -dimensional lattices.
In this section we will consider some part of our discussion
related to the hexagonal grid. The hexagonal grid is a two-di-
mensional grid and hence we will compare it to . We can de-
fine a folded-row and folding in the hexagonal grid in the same
way as they are defined in . To prove that the results remain
unchanged we will describe the well known transformation be-
tween the hexagonal grid and .

The hexagonal grid is defined as follows. We start by tiling
the plane with regular hexagons whose sides have length

(so that the centers of hexagons that share an edge are at
distance ). The center points of the hexagons are the points of
the grid. The hexagons tile in a way that each point

, is a center of some hexagon.
The transformation uses an isomorphic representation of the

hexagonal grid. Each point has the following neigh-
boring vertices,

It may be shown that the two representations are isomorphic by
using the mapping , which is defined by

. The effect of the mapping on the neighbor set is
shown in Fig. 3. From now on, slightly changing notation, we
will also refer to this representation as the hexagonal grid. Using
this new representation the neighbors of point are

Lemma 16: Two lines differ in length or slope in one repre-
sentation if and only if they differ in length or slope in the other
representation.
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Fig. 4. From a corner CR��� �� �� �� to hexagonal sphere with radius 4

Proof: This claim can be verified easily by observing that
two lines are equal in length and slope in one representation
if and only if they are equal in length and slope in the other
representation.

Corollary 10: A shape is a DDC in the hexagonal grid if
and only if is a DDC in .

Clearly, the representation of the hexagonal grid in terms
of implies that all the results on folding in the square grid
hold also in the hexagonal grid. We will consider now the most
important families of DDCs in the hexagonal grid, regular
hexagons and circles. A regular hexagon in the hexagonal
grid is also called an hexagonal sphere with radius . It is a
shape with a center hexagon which includes all the points in
the hexagonal grid which are within Manhattan distance
from the center point. Applying the transformation on this
sphere we obtain a new shape in the square grid. This shape is a

square from which isosceles right triangle
with sides of length are removed from the left upper corner
and the right lower corner. For the construction we use as our
shape , in Theorem 4, a corner CR ,
where and . In
Appendix B, a construction for doubly periodic -DDC, where

is such corner, is given where the number of dots in is
approximately . The lattice tiling for is also
a lattice tiling for the shape obtained from by removing an
isosceles right triangle with sides of length from the lower
left corner and adding it to the upper right corner of the
(see Fig. 4). The constructed doubly periodic -DDC can be
rotated by 90 degrees or flipped either horizontally or vertically
to obtain a doubly periodic -DDC, where is approximately
an hexagonal sphere with radius . This yields a packing
ratio approximately 1 between the lower bound and the upper
bound on the number of dots. Now, it is easy to verify that the
same construction, for a DDC with a circle shape, given in
Subsection V-A for the square grid will work in the hexagonal
grid. For this construction we will use regular hexagon and a
circle in the hexagonal grid to obtain a packing ratio between
the lower bound and the upper bound on the number of dots in
the circle which is the same as in the square grid.

VII. APPLICATION FOR ERROR-CORRECTION

In this section, we will discuss the usage of folding to design
optimal (or “almost” optimal) codes which can correct adja-
cent errors in a multidimensional array, i.e., a multidimensional
2-burst-correcting code. The construction is a generalization of
the construction of optimal one-dimensional 2-burst-correcting
codes given by Abramson [33]. His construction was general-
ized for larger bursts by [34] and [35] who gave a comprehensive

treatment for this topic. Multidimensional generalization for the
2-burst-correcting codes were given in [25], [62]. We will give a
multidimensional generalization only for the 2-burst-correcting
codes. The parity-check matrix of a code of length and
redundancy , consists of the consecutive nonzero
elements (powers of a primitive element ) of GF followed
by a row of ones. The received word has one or two errors de-
pending if the last entry of its syndrome is one or zero, respec-
tively. The position of the error is determined by the first en-
tries of the syndrome.

The generalization of this idea is done by folding the nonzero
elements of GF into the parity-check matrix of a multidi-
mensional code row by row, dimension by dimension. Assume
that we have a -dimensional array of size
and we wish to correct any -dimensional burst of length 2 (at
most two adjacent positions are in error). The following con-
struction given in [62] is based on folding the nonzero elements
of a Galois field with characteristic 2 into a parity check matrix,
where the order of the elements of the field is determined by a
primitive element of the field.
Construction A: Let be a primitive element in GF for
the smallest integer such that . Let

and , where . Let
be a matrix containing distinct binary -tuples as columns.
We construct the following
parity check matrix .

for all , where .
For completeness we present the decoding algorithm given in

[62]. We assume that the error occurred is a 2-burst. The syn-
drome received in the decoding algorithm consists of three
parts.

• The first bit determines the number of errors occurred. Ob-
viously if the syndrome is the all-zeros vector than no er-
rors occurred. If the first bit of the syndrome is an one then
exactly one error occurred and its position is the position
of in . If the first bit of a non-zero vector is a zero
then two errors occurred. Their position is determined by
the other entries of .

• The next bits determine the dimension in which the burst
occurred. There are dimensions and each column of the
matrix corresponds to a different dimension for two con-
secutive errors. If the errors occurred in positions

and
then the value of the bits, , is the -th
column of the matrix .

• The entries of the last rows of the matrix form
the folding of the first consecutive elements of
GF . Given a dimension there exists an integer
such that each two consecutive elements in dimension

have the form . It is easy to verify that for
we have . Thus,

given the dimension of the burst of size two the last bits
of can determine the two consecutive positions of the
burst.
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It leads to the following theorems [62].

Theorem 11: The code constructed in Construction A can
correct any 2-burst in an array codeword.

Theorem 12: The code constructed by Construction A has re-
dundancy which is greater by at most one from the trivial lower
bound on the redundancy.

The same construction will work if instead of a -dimen-
sional array our codewords will have have a shape of size

, there is a lattice tiling for , and there is a direction
vector such that defines a folding. The nonzero el-
ements of GF will be ordered along the folded-row of .
Since usually the number of elements in is not we
should find a shape which contains and . We
design a code with the shape of and since the code
will be able to correct the same type of errors in .

Finally, the construction can be generalized in a way that the
multidimensional code will be able to correct other types of two
errors in a multidimensional array [62].

VIII. APPLICATION FOR PSEUDO-RANDOM ARRAYS

MacWilliams and Sloane [42] gave the name pseudo-random
sequence to a maximal length sequence obtained from a linear
feedback shift register. These sequences called also PN (Pseudo
Noise) sequences or M-sequences have many desired properties
as described in [41], [42]. The term pseudo-random array was
given by MacWilliams and Sloane [42] to a rectangular array
obtained by folding a pseudo-random sequence into its en-
tries. The constructed arrays can be obtained also as what is
called maximum-area matrices [43]. In [42] it was proved that if
a pseudo-random sequence of length is folded into
an array such that , and
g.c.d then the constructed array has many desired
properties and hence they called this array a pseudo-random
array. Some of the properties they mentioned are as follows.

1) Recurrences—the entries satisfy a recurrence relation
along the folding.

2) Balanced— entries in the array are ones and
entries in the array are zeros.

3) Shift-and-Add—the sum of with any of its cyclic shifts
is another cyclic shift of .

4) Autocorrelation Function—has two values: in-phase and
out-of-phase.

5) Window property—each of the nonzero matrices
of size is seen exactly once as a window in the
array.

All these properties except for the window property are a
consequence of the fact that the elements in the folded-row are
consecutive elements of an M-sequence . Before we examine
whether an array of any shape, obtained by folding into it,
has these properties we have to define what is a cyclic shift of
any given shape (even so we used the term without definition
before). Our definition will assume again that there exists a lat-
tice tiling for and a direction such that defines
a folding. A cyclic shift of the shape (placed on the grid) is

obtained by taking the set of elements . Clearly,
we have the following lemma.

Lemma 17: The shape of a cyclic shift of is .

Theorem 13: Let be a lattice tiling for a shape and let
be a direction such that defines a folding. If an M-se-
quence is folded into in the direction then the Recur-
rences, Balanced, Shift-and-Add, and the Autocorrelation Func-
tion properties hold for the constructed array.

Proof: These properties follows immediately from the fact
that the entries of by the order of the folded-row are consec-
utive elements of the M-sequence . The two cyclic shifts of
have the same folded-row up to a cyclic shift. Therefore, these
four properties are a direct consequence from the related prop-
erties of the M-sequence .

Lemma 18: Let be a lattice tiling for the shape and be
a direction for which the triple defines a folding. Let
be a binary sequence of length . Let and be two points
for which . Then, for any two positive
integers and the two windows of
whose leftmost bottom points are and are equal.

Proof: The lemma is an immediate consequence from the
definition of the lattice coloring induced by and the
definition of .

Theorem 14: Assume define a lattice tiling for an
array , such that . Assume further that
defines a lattice tiling for the shape and defines a
folding for the direction . Then, if we fold an M-sequence
into in the direction , the resulting shape has the
window property if and only if the array has the

window property by folding into in the direction .
Proof: Since is a lattice tiling for both and there

is a sequence of arrays , such that
is a

lattice tiling for , and the origin is contained
in . Moreover, it is easy to verify that given the
shape , we have that

with respect to . The theorem follows now
by induction and using Lemma 18.

Theorem 14 does not give any new information about window
sizes which are not covered in [42], [43]. The following lemma
provides such information. We say that a shape of size
has the window property if and each nonzero value
for appears exactly once in a copy of , where is considered
to be a cyclic shape.

Lemma 19: Let be a lattice tiling for a shape ,
, and let be a direction, such that defines a

folding. Let be an M-sequence of length and let be
a shape with volume . If in the array defined by
there is no copy of which contains only zeros then has the

window property.
Proof: By the Shift-and-Add property (Theorem 13),

has two identical copies of if and only if has a copy of
which contains only zeros. Thus, has the window property
if and only if there is no copy of in which contains only
zeros.
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We can use now the properties we have found for folding
to obtain various results. An example is given in the following
corollary.

Corollary 11: Let be a lattice tiling for a shape
, and let be a direction, such that defines a

folding. Let be an M-sequence of length . If is
a Mersenne prime then has the and the
window property for any given direction vector .

Example 2: Consider the following M-sequence
of length 31. Let be a

lattice tiling for a corner CR(5,7;1,4) with the generator matrix

By folding of in the direction we obtain the following
pseudo-random array:

This array has the 5 1 and 1 5 window properties. Out of
the 19 shapes of size 5 with exactly two rows it does not have
the window property only for the following three shapes:

The pseudo-random array obtained by folding with the di-
rection is

It has the 5 1 and 1 5 window properties. But, out of the
19 shapes of size 5 with exactly two rows it does not have the
window property for eight shapes.

Both pseudo-random arrays have a window property for the
star shape given by

IX. CONCLUSION AND OPEN PROBLEMS

The well-known definition of folding was generalized. The
generalization and its applications led to several new results
summarized as follows:

1) The generalization is based on a lattice tiling for a shape
and a direction . The number of possible nonequivalent di-
rections is . Necessary and sufficient conditions that
a direction defines a folding are derived.

2) Folding a -sequence into a shape result in a distinct
difference configuration with the shape .

3) Lower bounds on the number of dots in a distinct difference
configuration with shape of regular polygon, circle, and
other interesting geometrical shapes are derived. In partic-
ular asymptotically optimal such patterns were constructed
for a large family of hexagonal shapes.

4) Low redundancy multidimensional codes for correcting a
burst of length two are obtained.

5) New pseudo-random arrays with window and correlation
properties are derived. These arrays differ from known ar-
rays either in their shape or the shape of their window
property.

The discussion on these results leads to many new interesting
open problems. We conclude with a list of six open problems
related to our discussion.

1) We have discussed several applications for the folding op-
eration in general and for the new generalization of folding
in particular. We believe that there are more interesting ap-
plications for this operation and we would like to see them
explored.

2) The construction for DDCs whose shape is a quasi-regular
hexagon works for infinite number of parameters. But, the
set of parameters is very sparse. Its density depends on the
number of primes obtained by Dirichlet’s Theorem. This
immediately implies the same for the parameters of DDCs
whose shape is a regular polygon. We would like to see a
construction of such DDCs with a dense set of parameters.

3) What is the lower bound on the number of dots in a DDC
whose shape is a circle with radius ? We conjecture that
the lower bound is .

4) We would like to see an asymptotic improvement on the
lower bounds on the number of dots in a DDC whose shape
is a regular -gon with radius .

5) Are there cases where we can improve the upper bound on
the number of dots in these DDCs asymptotically?

6) We would like to see a more general theorem which
connects folding of M-sequences and general window
property.

APPENDIX A

In this Appendix A, we prove the necessary and sufficient
condition for a triple to define a folding. For the proof
of the theorem we use the well-known Cramer’s rule [63] which
is given first.

Theorem 15: Given the following system with the linear
equations and the variables

...
...

. . .
...

...
...

If

...
...

. . .
...
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then for , where

...
. . .

...
...

. . .
...

Let be a -dimensional lattice tiling for the shape . Let
be the following generator matrix of

...
...

. . .
...

Given the direction , w.l.o.g. we assume
that the first values of are nonzeros and the last and the
last values are zeros. By Lemma 5 and Corollary 1, if

defines a folding then there exist integer coefficients
such that

and there is no integer , and integer coefficients
such that

Hence we have the following equations:

(2)

(3)

Let if and if .
The equations in (2), (3) are equivalent to the following
equations:

We define now a set of new coefficients
, as follows:

for

for

Consider the matrix

...
...

. . .
...

Using Theorem 15 it is easy to verify that the unique solution
for the ’s is

(4)

where is the matrix obtained from by
deleting column of .

Lemma 20: For each divides defined in
(4).

Proof: Consider the following matrix

...
...

. . .
...

By the definition of the entries in the matrix and since
it follows that . in

Theorem 15 is equal , while is equal , for
some integer . Therefore, and the lemma follows.

This analysis leads to the following theorem.

Theorem 16: If is a lattice tiling for the shape
then the triple defines a folding if and only if

and .
Proof: Assume first that defines a folding.

Now, assume for the contrary that
or . We distinguish between two

cases.
Case 1:

Assume that .
Equations (2), and (3) have exactly one solution for the ’s

given in (4). Since , it follows that
, are integers. Therefore, we have

i.e.,

and as a consequence by Lemma 5 we have that does
not define a folding, a contradiction.
Case 2:

Assume that .
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Let . Therefore

and as a consequence by Lemma 5 we have that does
not define a folding, a contradiction.

As a consequence of Case 1 and Case 2 we have
that if defines a folding with the vector then

and .
Now assume that and

. Consider the set of equations de-
fined by

(5)

Since the rows of are linearly independent, it follows that this
set of equations has a unique solution for the ’s (but, these
coefficients are not necessary integers). Using the same analysis
proceeding the theorem, we have by the Cramer’s rule that this
solution is given by (4) and hence the ’s are integers. Assume
for the contrary that does not define a folding. Then,
by Lemma 5 we have that there exist integers ,
such that

(6)

for some integer .
Since the rows of are linearly independent then there exists

exactly one set of ’s (integers or non-integers) which satisfies
(6). Let , where clearly .
From (5) and (6) we obtain

Since the rows of are linearly independent it implies that
for each , i.e., .

is an integer and implies that

. and hence
divides for each . divides

, and hence divides for each . Hence,
. But,

and hence , i.e., , a contradiction. Thus,
defines a folding.

APPENDIX B

In this Appendix B, we consider DDCs with two special
shapes, called corner and flipped T. The DDCs with these

Fig. 5. A corner CR (7,11;2,4).

shapes and special parameters are important in applying The-
orem 4 to obtain other DDCs such as triangles in the square
grid and hexagonal spheres in the hexagonal grid.

A. Corner

A corner, CR , is an
rectangle from which an rectangle was

removed from its right upper corner. An example is given in
Fig. 5. Let be a CR and let the
lattice with the following generator matrix:

Clearly, is a lattice tiling for . A general result concerning
DDCs whose shape is a corner seems to be quite difficult. We
will consider the case which seems to be the most useful for our
purpose. First note, that by Corollary 2, defines a
folding for if and only if . Assume first
that and . By Theorem 9, we have an

rectangle such that for some prime
, , and is even. Now, we will make new

choices for , and , which are close to the old ones.
Let ; we distinguish between three cases of :
(W.1) If then and .
(W.2) If then and .
(W.3) If then we distinguish between two cases:

• if then and .
• if then and .
It is easy to verify that the size of the new corner

, is is a lattice tiling
for , defines a folding, and we can
form a doubly periodic -DDC with it. Hence, we have the
following theorem.

Theorem 17: Let and be two integers such that
for some prime number , where is an

even integer, , are defined by (W.1), (W.2), (W.3). Then
there exists a doubly periodic -DDC, whose shape is a corner,

, with dots.

B. Flipped T

A flipped T, , is an
rectangle from which an rectangle was removed

from its left upper corner and an rectangle was removed
from its right upper corner. An example is given in Fig. 6. Let

be a and let the lattice with
the following generator matrix
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Fig. 6. A flipped T FT(5,17;4,6).

Clearly, is a lattice tiling for . A general result concerning
DDCs whose shape is a flipped T seems to be quite difficult. We
will consider the case which seems to be the most useful for our
purpose. First note, that by Corollary 2, defines a
folding for if and only if
which is equivalent to . Assume
that . By Theorem 9, we have an rectangle

such that for some prime ,
and is even. Now, we will make new choices for , and

, which are close to the old ones. Let ; we distinguish
between two cases of :
(Y.1) If then and .
(Y.2) If then and

.
It is easy to verify that the size of the new flipped T,

, is is a
lattice tiling for , defines a folding,
and we can form a doubly periodic -DDC with it. Hence, we
have the following theorem.

Theorem 18: Let and be two integers such that
, are defined by (Y.1), (Y.2), and

for some prime number . Then there exists a doubly
periodic -DDC, whose shape is a flipped T,

, with dots.

APPENDIX C

In this Appendix C, we demonstrate how Theorem 4 is ap-
plied for several geometric shapes (having the role of in the
theorem), where our shape in the doubly periodic -DDC is
an appropriate corner, a flipped T, or a quasi-regular hexagon.

A. Equilateral Triangle

Let be an equilateral triangle with sides of length . The
area of is and hence an upper bound on the number of

dots in is . For our shape we

take a flipped T, which overlaps in
its shorter base with the base of . These bases of and share
the same center. The area of is and hence the density of
the array is . The intersection of and , equal

to . Therefore, a lower bound on the number of dots
in is and the resulting
packing ratio is 0.899. The same result can be obtained by using
other structures instead of a flipped T.

Fig. 7. Quasi-regular hexagon intersecting a regular pentagon.

B. Isosceles Right Triangle

Let be an equilateral triangle with base and height of length
. The area of is and hence an upper bound on the

number of dots in is . For

our shape we take a corner which
overlaps in its two longer sides with the base and height of .
and shares the intersection vertex of these sides. The area of
is and hence the density of the array is . The intersection
of and , equal to . Therefore, a lower
bound on the number of dots in is

and the resulting packing ratio is 0.899 (ex-
actly as in the case of an equilateral triangle).

C. Regular Pentagon

Let be a pentagon with radius . The area of is
and hence an upper bound on the number of dots

in is . Let be a quasi-regular hexagon
having a joint base with and two short overlapping sides
with , where these sides are connected to this base (see
Fig. 7). The distance between the base and the diameter
of is . The
length of the base is and the length of the di-
ameter of is . Hence, the area
of is and the density of the
array is . The area of the intersection

between and , is computed by subtracting
from the area of the area of the two isosceles trian-
gles and . The lower bound on the number of dots is

. The maximum on this lower

bound is obtained for , i.e., the lower bound on the
number of dots in a pentagon with radius is
yielding a packing ratio of 0.946795.
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