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Abstract. The q-analogs of covering designs, Steiner systems, and Turán de-

signs are studied. It is shown that q-covering designs and q-Turán designs are

dual notions. A strong necessary condition for the existence of Steiner struc-
tures (the q-analogs of Steiner systems) over F2 is given. No Steiner structures

of strength 2 or more are currently known, and our condition shows that their
existence would imply the existence of new Steiner systems of strength 3. The

exact values of the q-covering numbers Cq(n, k, 1) and Cq(n, n−1, r) are deter-

mined for all q, n, k, r. Furthermore, recursive upper and lower bounds on the
size of general q-covering designs and q-Turán designs are presented. Finally, it

is proved that C2(5, 3, 2) = 27 and C2(7, 3, 2) 6 399. Tables of upper and lower

bounds on C2(n, k, r) are given for all n 6 8.

1. Introduction

Let Fq be the finite field with q elements. Given positive integers n and k 6 n, let
Gq(n, k) denote the set of all k-dimensional subspaces of the vector space Fnq . The set
Gq(n, k) is often called the Grassmannian. In recent years, there has been increasing
interest in codes over Grassmannians. This interest stems from the groundbreaking
work of Koetter and Kschischang [11] who showed that such codes are precisely what
is needed for error-correction in networks (in the randomized noncoherent network-
coding model). We observe that codes over Grassmannians are the q-analogs of con-
stant-weight codes that have been studied in coding theory for decades.

Here, we focus on design theory, which is a principal area of combinatorics with
deep connection to coding theory. Numerous objects studied in design theory have
well-known q-analogs. For example, the q-analog of Sperner’s theorem is included in
the classic textbook of van Lint and Wilson [13, p.293]. The q-analogs of various
t-designs and relationships between them have been studied in [2, 10, 14, 16, 17, 18,
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19, 20] and other papers. Connections between these topics and certain problems of
interest in coding theory were established in [1, 16].

In this paper, we consider the q-analogs of covering designs, Steiner systems, and
Turán designs. To the best of our knowledge, the q-analogs of covering designs and
Turán designs have not been previously investigated. We begin our discussion with
the following definitions:

A q-covering design Cq(n, k, r) is a subset S of Gq(n, k) such that each ele-
ment of Gq(n, r) is contained in at least one subspace of S. The q-covering
number Cq(n, k, r) is the minimum size of a q-covering design Cq(n, k, r).

A Steiner structure Sq(r, k, n) is a subset S of Gq(n, k) such that each ele-
ment of Gq(n, r) is contained in exactly one subspace of S. A Steiner struc-
ture Sq(r, k, n), when it exists, is the smallest q-covering design Cq(n, k, r).

A q-Turán design Tq(n, k, r) is a subset S of Gq(n, r) such that each ele-
ment of Gq(n, k) contains at least one subspace from S. The q-Turán num-
ber Tq(n, k, r) is the minimum size of a q-Turán design Tq(n, k, r).

The rest of the paper is organized as follows. In the next section, we show that
a given subset of Gq(n, k) is a q-covering design if and only if its orthogonal com-
plement in Gq(n, n−k) is a q-Turán design. Thus q-covering designs and q-Turán
designs are dual notions. We also prove a simple but important bound on the
size of Cq(n, k, r), which holds with equality if and only if Cq(n, k, r) is a Steiner
structure. In Section 3, we establish a new necessary condition for the existence of
Steiner structures over F2. This condition implies that constructing Steiner struc-
tures with new parameters is likely to be difficult. In Section 4, we determine the
exact values of the q-covering numbers Cq(n, k, 1) and Cq(n, n−1, r) for all q, n, k,
and r. In Section 5, we prove several lower bounds on q-covering numbers which
improve upon the bound of Section 2. In Section 6, we describe a recursive construc-
tion of q-covering designs that implies a strong upper bound on q-covering numbers.
In Section 7, we present constructions and bounds for two specific q-covering num-
bers: we show that C2(5, 3, 2) = 27 and C2(7, 3, 2) 6 399. In Section 8, we compile
tables of C2(n, k, r) for all n 6 8. We conclude with a list of open problems closely
related to our work in Section 9.

2. Covering designs, Turán designs, and Steiner structures

In this section, we derive simple, but fundamental, connections between the comb-
inatorial objects studied in this paper: q-covering designs, q-Turán designs, and Stei-
ner structures. Although we will assume throughout that the ambient space is Fnq , we
point out that our results hold for an arbitrary n-dimensional vector space over Fq.

Two vectors u,v in Fnq are said to be orthogonal if (u,v) = 0, where (· , ·) stands
for the usual inner product over Fq. For a subspace V of Fnq , its dual V ⊥ is given by

V ⊥
def
=
{

u ∈ Fnq : (u,v) = 0 for all v ∈ V
}
.

It is easy to see that dimV ⊥ = n− k if and only if dimV = k. Given a subset S of
Gq(n, k), we define its orthogonal complement as S⊥ = {V ⊥∈ Gq(n, n−k) : V ∈ S}.
Theorem 2.1. A subset S of Gq(n, k) is a q-covering design Cq(n, k, r) if and on-
ly if its orthogonal complement S⊥ is a q-Turán design Tq(n, n− r, n− k).

Proof. Assume, first, that S is a q-covering design Cq(n, k, r). Consider an arbitrary
subspace U in Gq(n, n− r). Then dimU⊥ = r and, hence, there exists at least one

Advances in Mathematics of Communications Volume 5, No. 2 (2011), 161–176



On q-analogs of Steiner systems and covering designs 163

V ∈ S such that U⊥⊆ V . But U⊥⊆ V if and only if V ⊥⊆ U . Since V ⊥∈ S⊥ and
U was arbitrary, it follows that every subspace in Gq(n, n− r) contains at least one
element of S⊥. Thus S⊥ is a q-Turán design Tq(n, n− r, n− k). A similar argument
shows that if S is a q-Turán design Tq(n, n− r, n− k) then S⊥ is a q-covering design
Cq(n, k, r). Again, the key point is that V ⊥⊆ U if and only if U⊥⊆ V .

Corollary 2.2.
Cq(n, k, r) = Tq(n, n− r, n− k).

Theorem 2.1 and Corollary 2.2 imply that q-covering designs and q-Turán designs
are dual objects. The next theorem provides a simple, but fundamental, lower bound
on Cq(n, k, r), and establishes the connection between q-covering designs and Steiner
structures. Note that the q-ary Gaussian coefficient

[
n
k

]
q

is defined as follows:[
n

k

]
q

def
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
and

[
n

0

]
q

def
= 1.

Theorem 2.3. Let S be a q-covering design Cq(n, k, r). Then |S| >
[
n
r

]
q
/
[
k
r

]
q

with
equality if and only if S is a Steiner structure.

Proof. Every element of S has dimension k, and therefore contains (covers) exactly[
k
r

]
q

distinct r-dimensional subspaces. The total number of r-dimensional subspaces
covered is

[
n
r

]
q
, and hence |S| >

[
n
r

]
q
/
[
k
r

]
q
.

If |S| achieves this bound with equality, each r-dimensional subspace is contained
in exactly one element of S, which means that S is a Steiner structure Sq(r, k, n).

3. On the existence of Steiner structures

It follows from Theorem 2.3 that the most interesting q-covering designs are Stei-
ner structures, which are the natural q-analogs of Steiner systems. For which pa-
rameters do Steiner structures exist? Clearly, Sq(r, r, n) and Sq(1, n, n) exist for all
r and n. These are trivial structures. The only nontrivial Steiner structures known
[1, 3, 13, 16] are of the form Sq(1, k, n). These Steiner structures, also called spreads,
exist if and only if k divides n. Various constructions of spreads can be found in [3,
7, 9] and other papers. For all other parameters, no Steiner structures are known.
Based upon the results reported by Thomas [19, 20] and upon the extensive com-
puter search we have performed, it is tempting to conjecture that no such Steiner
structures exist. The present section provides further evidence for this conjecture.

Recall that a Steiner system S(t, k, n) is a collection S of k-subsets (called blocks)
of an n-set such that every t-subset of the n-set is contained in exactly one block of S.
The parameter t is said to be the strength of the system. The following connections
between Steiner structures and Steiner systems were established in [20] and [16].

Theorem 3.1. Existence of a Steiner structure Sq(2, k, n) implies the existence of
Steiner systems S

(
2, qk−1, qn−1

)
and S

(
2, (qk−1)/(q−1), (qn−1)/(q − 1)

)
. Further-

more, existence of S2(3, k, n) implies the existence of S(3, 2k−1, 2n−1).

Theorem 3.1 does not indicate that constructing new Steiner structures, especi-
ally Sq(2, k, n), is a formidable task. By Theorem 3.1, such Steiner structures lead to
Steiner systems of strength 2, which are not that rare. The case q = 2 appears to
be the easiest; indeed, numerous S(2, 2k−1, 2n−1) and S(2, 2k− 1, 2n− 1) Steiner
systems are known [6]. Our main result is the following theorem, which shows that
constructing S2(2, k, n) is likely to be much harder than what Theorem 3.1 suggests.
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Theorem 3.2. Existence of a Steiner structure S2(2, k, n) implies the existence of
a Steiner system S(3, 2k, 2n).

Proof. Let S be a Steiner structure S2(2, k, n). Each subspace of S partitions Fn2 in-
to 2n−k additive translates of itself. Consider the set of all such translates, namely:

S′ def
=
{
{u,u + v1,u + v2, . . . ,u + v2k−1} : {0,v1, . . . ,v2k−1} ∈ S, u∈Fn2

}
.

We claim that S′ is a Steiner system S(3, 2k, 2n). Observe that S′ has the right car-
dinality. That is

|S′| = 2n−k|S| = 2n−k

[
n

2

]
2[

k

2

]
2

= 2n−k
(2n−1)(2n−1−1)

(2k−1)(2k−1−1)
=

(
2n

3

)
(

2k

3

) =
∣∣S(3, 2k, 2n)

∣∣.
Hence, to complete the proof, it would suffice to show that every 3-subset {x,y, z}
of Fn2 is contained in some block of S′. Since S is a Steiner structure S2(2, k, n), the
two-dimensional subspace {0, x + y, x + z,y + z} is contained in some k-dimensional
subspace of S, call it V . By the definition of S′, we know that x +V is a block of S′.
But x + {0, x+y, x+z,y+z} = {x,y, z, x+y+z} and therefore {x,y, z} ⊂ x+V .

At present, no S(3, 2k, 2n) Steiner systems with 2k > 8 are known. Numerous ef-
forts to find such Steiner systems, spanning several decades, have been unsuccessful.
In view of this, Theorem 3.2 implies that constructing S2(2, k, n), if such structures
at all exist, would be extraordinarily difficult.

In fact, the same conclusion can be extended to any Steiner structure over F2 with
new parameters. It is shown in [16] and [20] that given a Steiner structure Sq(r, k, n),
one can always construct the derived structure Sq(r− 1, k− 1, n− 1). Consequent-
ly, if S2(r, k, n) exists for some k > r> 2, then S2(2, k− r+ 2, n− r+ 2) also exists,
which implies by Theorem 3.2 the existence of a Steiner system S(3, 2k−r+2, 2n−r+2).

Among the S2(2, 3, n) Steiner structures, those of the form S2(2, 3, n) have the
smallest parameters. Thus resolving their existence is a natural target for investiga-
tion. It can be easily shown that if S2(2, 3, n) exists, we must have n ≡ 1, 3 (mod 6).
Many other necessary conditions for the existence of S2(2, 3, n) can be obtained by
considering derived designs related to any fixed (n−1)-dimensional subspace.

4. Optimal q-covering designs

In this section, we determine the exact values of the q-covering numbers Cq(n, k, 1)
and Cq(n, n− 1, r) for all q, n, k, and r. In each case, explicit constructions of the cor-
responding optimal q-covering designs are given.

Lemma 4.1.

Cq(n, k, 1) =
qn− 1

qk− 1
whenever k divides n.

Proof. By Theorem 2.3, a Steiner structure Sq(1, k, n) is an optimal q-covering de-
sign, when it exists. As shown in [3, 16] and other papers, such Steiner structures ex-
ist iff k divides n, and it is easy to see that |Sq(1, k, n)| = (qn− 1)/(qk− 1).

Lemma 4.2.
Cq(n, k, r) 6 Cq(n− 1, k− 1, r).
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Proof. Let us represent Fnq as Fn−1q ×Fq, namely Fnq =
{

(x, α) : x ∈ Fn−1q , α ∈ Fq
}

.

Let S be a q-covering design Cq(n− 1, k− 1, r) in Fn−1q . For each V ∈ S, we define

V ′
def
=
{

(v, α) : v ∈ V, α ∈ Fq
}
.

Then V ′ is a k-dimensional subspace of Fnq = Fn−1q ×Fq. Let S′ be the set of all such
subspaces, that is S′ = {V ′∈ Gq(n, k) : V ∈ S}. It can be easily verified that S′ is
a q-covering design Cq(n, k, r), and the lemma follows.

Corollary 4.3.

Cq(n+ δ, k + δ, r) 6 Cq(n, k, r) for all nonnegative integers δ.

Lemma 4.4.

Cq(n, k, 1) = qn−k + 1 for k =
⌈
n
2

⌉
,
⌈
n
2

⌉
+ 1, . . . , n− 1.

Proof. We have Cq(2(n− k), n− k, 1) = (q2(n−k)−1)/(qn−k−1) = qn−k+1 by Lem-
ma 4.1. Let δ = 2k−n. Then δ is a nonnegative integer for k > n/2, and therefore

Cq(n, k, 1) = Cq
(
2(n− k) + δ, n− k + δ, 1

)
6 Cq

(
2(n− k), n− k, 1

)
= qn−k + 1

in view of Corollary 4.3. On the other hand, Cq(n, k, 1) > (qn− 1)/(qk− 1) by The-
orem 2.3. But

⌈
(qn− 1)/(qk− 1)

⌉
= qn−k + 1 for all k = dn/2e, dn/2e+ 1, . . . , n− 1,

which completes the proof of the lemma.

The proof of Lemma 4.4 indicates how q-covering designs that achieve the q-cov-
ering number Cq(n, k, 1) = qn−k + 1 can be constructed. Start with a Steiner struc-
ture Sq

(
2(n− k), n− k, 1

)
. In order to construct Sq

(
2(n− k), n− k, 1

)
, any of the

several known constructions of spreads can be used [3, 7]. Next, apply the construc-
tion described in the proof of Lemma 4.2 iteratively δ = 2k−n times. This method
applies whenever k > n/2. It is interesting that for k < n/2, a completely different
construction is required. In particular, we will make use of the following lemma.

Lemma 4.5. Let ρ be the remainder obtained when k is divided into n, and define
m = k+ρ. Then there exists a set X consisting of one m-dimensional subspace of Fnq
and (qn − qm)/(qk − 1) k-dimensional subspaces of Fnq , such that

(1) V ∩ V ′ = {0} for all V, V ′∈ X.

An explicit construction of the set X along with a detailed proof of Lemma 4.5 can
be found in [8, Section III]. Let U be a one-dimensional subspace of Fnq . Then (1)
implies that there is at most one subspace V of X that contains U. The total number
of one-dimensional subspaces contained in some subspace of X is given by

qn− qm

qk− 1

[
k

1

]
q

+

[
m

1

]
q

=
qn− qm

qk− 1
· q

k− 1

q − 1
+
qm− 1

q − 1
=

qn− 1

q − 1
=

[
n

1

]
q

.

This implies that every one-dimensional subspace of Fnq is contained in exactly one
subspace of X. Thus X can be regarded as a generalization of the notion of a spread
to the case where k does not divide n (if k divides n, the set X is, in fact, a spread).
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Theorem 4.6.
Cq(n, k, 1) =

⌈
qn− 1

qk− 1

⌉
for k = 1, 2, . . . , n.

Proof. As in Lemma 4.5, let ρ be the remainder obtained when k is divided into n,
and define m = k + ρ. If ρ = 0, the claim of the theorem follows immediately from
Lemma 4.1. Thus it remains to consider the case where k does not divide n, and the-
refore k < m < 2k. In this case, we will modify the set X exhibited in Lemma 4.5 to
obtain a q-covering design Cq(n, k, 1), as follows. LetW denote the single m-dimen-
sional subspace of X, and let S be a q-covering design consisting of k-dimensional
subspaces of W such that every one-dimensional subspace of W is contained in at
least one element of S. Then clearly S ∪

(
X\{W}

)
is a q-covering design Cq(n, k, 1).

Since dimW = m, this implies that

(2) Cq(n, k, 1) 6
qn− qm

qk− 1
+ Cq(m, k, 1) =

qn− qm

qk− 1
+ qm−k + 1 =

qn− qρ

qk− 1
+ 1

where the first equality follows from Lemma 4.4 along with the fact that k < m < 2k.
Note that the right-hand side of (2) is equal to

⌈
(qn− 1)/(qk− 1)

⌉
when ρ 6= 0. Fin-

ally, observe that Cq(n, k, 1) >
⌈
(qn− 1)/(qk− 1)

⌉
by Theorem 2.3.

Corollary 4.7.

Tq(n, n− 1, r) =

⌈
qn− 1

qn−r− 1

⌉
for r = 1, 2, . . . , n− 1.

Proof. Follows from Theorem 4.6 and Corollary 2.2.

Having determined the q-covering numbers Cq(n, k, 1) in Theorem 4.6, let us now
deal with Cq(n, n− 1, r). In this case, it will be more convenient to consider the dual
problem of determining the q-Turán numbers Tq(n, k, 1). We begin with a simple
upper bound on Tq(n, k, r) that holds for all q, n, k and r.

Lemma 4.8.
Tq(n, k, r) 6

[
n− k+ r

r

]
q

.

Proof. Let U be any fixed subspace of Fnq with dimU = n−k+r. Let S be the set of
all r-dimensional subspaces of U . Clearly, |S| =

[
n−k+r

r

]
q
. We claim that S is a q-Tu-

rán design Tq(n, k, r). To see this, consider an arbitrary k-dimensional subspace V
of Fnq . Then U ∩ V is a subspace of U of dimension

dim(U ∩ V ) = dimU + dimV − dim(U+ V ) > (n− k+ r) + k − n = r

and as such it must contain at least one element of S. Thus S is, indeed, a q-Turán
design Tq(n, k, r), and the lemma follows.

Corollary 4.9.
Cq(n, k, r) 6

[
n− k+ r

r

]
q

.

Proof. Cq(n, k, r) = Tq(n, n− r, n− k) by Corollary 2.2. Now use the upper bound on

Tq(n, n− r, n− k) in Lemma 4.8 and observe that
[
n−(n−r)+(n−k)

n−k
]
q
=
[
n−k+r

r

]
q
.

Theorem 4.10.

Tq(n, k, 1) =
qn−k+1− 1

q − 1
for k = 1, 2, . . . , n.

Proof. The fact that Tq(n, k, 1) 6 (qn−k+1−1)/(q−1) follows as a special case of Lem-
ma 4.8 with r = 1. Hence, it remains to prove that (qn−k+1−1)/(q−1) is also an up-
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per bound on Tq(n, k, 1). To this end, consider an arbitrary set S of one-dimensional
subspaces of Fnq with |S| = (qn−k+1−1)/(q−1) −1. We claim that there is a k-dim-
ensional subspace of Fnq that does not contain any element of S.

Let U be the largest subspace of Fnq such that U ∩ V = {0} for all V ∈ S. Define
m = dimU. Ifm > k we are done, since then every k-dimensional subspace of U does
not contain any element of S. Thus let us assume to the contrary that m < k. Now
fix a V ∈ S and consider the vector space 〈V ∪ U〉 spanned by all the vectors in the set
V ∪U. Since dimU = m, dimV = 1, and U ∩V = {0}, we have dim 〈V ∪ U〉 = m+1.
Thus 〈V ∪ U〉 contains exactly qm+1− qm vectors that are not contained in U . Hence

(3)

∣∣∣∣ ⋃
V∈S
〈V ∪ U〉

∣∣∣∣ 6 |S|
(
qm+1 − qm

)
+ |U | = qn−k+m+1 − qm(q − 1).

Form < k, the right-hand side of (3) is bounded by qn−1. Consequently, there exists
a nonzero vector x∈Fnq such that x /∈ ∪V∈S 〈V ∪ U〉. Consider the vector space
W = 〈{x} ∪ U〉. We haveW ∩V = {0} for all V ∈ S and dimW = m+1, by the de-
finition of x. But this is in contradiction to the maximality of U. It follows that we
must have m > k, which establishes the claim of the foregoing paragraph.

Corollary 4.11.

Cq(n, n− 1, r) =
qr+1− 1

q − 1
for r = 1, 2, . . . , n− 1.

To construct q-covering designs that achieve the q-covering number Cq(n, n− 1, r)
in Corollary 4.11, first construct a q-Turán design Tq(n, n− r, 1) as the set of all one-
dimensional subspaces of a fixed vector space U ⊂ Fnq of dimension r + 1 (cf. Lem-
ma 4.8), then take the orthogonal complement of Tq(n, n− r, 1) as in Theorem 2.1.

5. Lower bounds on q-covering numbers

We now present two lower bounds on q-covering numbers. In Theorem 5.1 and Co-
rollary 5.2, we establish the q-analog of a well-known bound of Schönheim [15]. In
Theorem 5.3, we state the q-analog of a bound by de Caen [5].

Theorem 5.1.

Cq(n, k, r) >

⌈
qn− 1

qk− 1
Cq
(
n− 1, k− 1, r− 1

)⌉
.

Proof. Let S be a q-covering design Cq(n, k, r) with |S| = Cq(n, k, r). Each element of
S contains (qk−1)/(q−1) one-dimensional subspaces of Fnq . Since the total number
of such subspaces is (qn− 1)/(q − 1), there is a one-dimensional subspace X⊂ Fnq
that is contained in at most (qk− 1)/(qn− 1)|S| elements of |S|. Let us represent Fnq
as X⊕W, where W is an (n− 1)-dimensional subspace, and define

S′ def
=
{
V ∩W : V ∈ S and X⊂V

}
.

By construction, the set S′ consists of at most (qk− 1)/(qn− 1)|S| subspaces of W,
one such subspace for each V ∈ S that contains X. We claim that S′ is a q-covering
design Cq(n− 1, k− 1, r− 1), and therefore

(4) Cq(n− 1, k− 1, r− 1) 6
qk− 1

qn− 1
|S| =

qk− 1

qn− 1
Cq(n, k, r).

It is clear that S′ consists of (k− 1)-dimensional subspaces ofW, a vector space of di-
mension n− 1. Hence in order to prove the claim, we need to show that every (r− 1)-

Advances in Mathematics of Communications Volume 5, No. 2 (2011), 161–176



168 Tuvi Etzion and Alexander Vardy

dimensional subspace ofW is contained in at least one element of S′. Let U be such
a subspace. Then X⊕U is an r-dimensional subspace of Fnq . Therefore, there exists
a V ∈ S such that X⊕ U ⊂ V . But then V ′= V ∩W is an element of S′. Moreover
U ⊂W and X⊕U ⊂ V together imply that U ⊂ V ′. This proves our claim that S′ is
a q-covering design Cq(n− 1, k− 1, r− 1) and establishes (4). The theorem then fol-
lows as an immediate consequence of (4).

Corollary 5.2.

Cq(n, k, r) >

⌈
qn−1

qk−1

⌈
qn−1−1

qk−1−1
· · ·

⌈
qn−r+1−1

qk−r+1−1

⌉
···

⌉⌉
.

Proof. Follows by applying Theorem 5.1 iteratively r−1 times, then observing that
Cq(n− r+ 1, k− r+ 1, 1) =

⌈
(qn−r+1−1)/(qk−r+1−1)

⌉
by Theorem 4.6.

Note that if one ignores all the ceilings in Corollary 5.2, one recovers precisely the
lower bound

[
n
r

]
q
/
[
k
r

]
q

of Theorem 2.3. Thus Corollary 5.2 is always at least as strong
(and usually much stronger) as Theorem 2.3.

Corollary 5.2 is the q-analog of the well-known Schönheim bound [15] on (ordina-
ry) covering numbers C(n, k, r). Recall that C(n, k, r) is defined as the smallest num-
ber of k-subsets of an n-set that cover (contain) every r-subset of the n-set. Schön-
heim’s bound [15] asserts that

(5) C(n, k, r) >

⌈
n

k

⌈
n− 1

k− 1
· · ·
⌈
n− r+ 1

k− r+ 1

⌉
···
⌉⌉
.

Another general lower bound on covering numbers is due to de Caen [4]. This bound,
which is often better than (5) for large k and r, asserts that

C(n, k, r) >
(r + 1)(n− r)
(k + 1)(n− k)

(
n

r

)
(
k

r

) .
Unfortunately, we could not prove the q-analog of this bound for all values of q, n, k
and r. However, we do have a proof for the special case where r = k − 1.

Theorem 5.3.

Cq(n, k, k− 1) >
(qk− 1)(q − 1)

(qn−k− 1)2

[
n

k+1

]
q

.

The proof of Theorem 5.3 follows closely the argument of de Caen in [5], and pro-
ceeds by establishing the equivalent result for q-Turán numbers, namely

(6) Tq(n, r+ 1, r) >
(qn−r− 1)(q − 1)

(qr− 1)2

[
n

r−1

]
q

.

We omit the technical details of our proof of (6), since this proof is essentially
q-identical to de Caen’s proof of the analogous result for Turán designs in [5].

6. An upper bound on q-covering numbers

So far, the only general upper bound we have for q-covering numbers (resp. q-Tu-
rán numbers) is Corollary 4.9 (resp. Lemma 4.8). Although this bound is tight for
r = 1 (cf. Theorem 4.10 and Corollary 4.11), it is quite weak for r > 2. In this sec-
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tion, we introduce a recursive construction of q-covering designs that leads to a new
general upper bound on Cq(n, k, r), which improves considerably upon Corollary 4.9.
In contrast to Theorem 5.1 and Theorem 5.3, the construction described in the fol-
lowing theorem is not a q-analog of any known construction of covering designs.

Theorem 6.1.

Cq(n, k, r) 6 qn−kCq(n−1, k−1, r−1) + Cq(n−1, k, r).

Proof. As in Lemma 4.2, let us represent Fnq as
{

(x, α) : x ∈ Fn−1q , α ∈ Fq
}

. Suppose

that S1 is a q-covering design Cq(n− 1, k, r) in Fn−1q , and S2 is a q-covering design

Cq(n− 1, k− 1, r− 1) in Fn−1q . Given a subspace V of Fn−1q , we define a correspond-

ing subspace V×{0} of Fnq as follows: V×{0} =
{

(v, 0)∈ Fnq : v∈V
}

. It is clear that

dim
(
V×{0}

)
= dimV. Also note that if dimV = k − 1, there are exactly qn−k dis-

tinct subspaces of the form
(
V×{0}

)
⊕ 〈(x, 1)〉, each of dimension k (since we can

choose x from any one of the qn−k cosets of V in Fn−1q ). With this, we now define the

sets S′1 and S′2 as follows:

S′1
def
=
{
V×{0} ⊂ Fnq : V ∈ S1

}
,

S′2
def
=
{(
V×{0}

)
⊕
〈
(x, 1)

〉
⊂ Fnq : V ∈ S2, x∈Fn−1q

}
.

Let S′ = S′1 ∪ S′2. By construction, the set S′ consists of |S1| + qn−k|S2| subspaces
of Fnq , each of dimension k. Therefore, to complete the proof, it remains to show that
for each r-dimensional subspace U of Fnq there is a subspace V ′∈ S′ such that U⊂V ′.

First, suppose that U⊂ Fn−1q ×{0}. Then U is contained in at least one subspace
of S′1, since S′1 is a Cq(n− 1, k, r) q-covering design in Fn−1q ×{0}. If U is not a subset
of Fn−1q ×{0}, it must contain a vector of the form (x, 1) for some x∈Fn−1q . This, in
turn, implies that U admits a basis of the form

{
(u1, 0), (u2, 0), . . . , (ur−1, 0), (x, 1)

}
and, hence, can be represented as

(
U ′×{0}

)
⊕〈(x, 1)〉, where U ′= 〈u1,u2, . . . ,ur−1〉.

Since U ′ is an (r−1)-dimensional subspace of Fn−1q whereas S2 is a q-covering design
Cq(n− 1, k− 1, r− 1) in Fn−1q , there exists a subspace V ∈ S2 that contains U ′. It is
easy to see that the corresponding subspace

(
V×{0}

)
⊕〈(x, 1)〉 of S′2 contains U .

The construction of Theorem 6.1 can be iterated to obtain an upper bound on the
q-covering number Cq(n, k, r) for any given set of parameters. For example, we have

C2(5, 3, 2) 6 22C2(4, 2, 1) + C2(4, 3, 2) = 22·5 + 7 = 27,(7)

C2(6, 3, 2) 6 23C2(5, 2, 1) + C2(5, 3, 2) 6 23·11 + 27 = 115,(8)

C2(7, 3, 2) 6 24C2(6, 2, 1) + C2(6, 3, 2) 6 24·21 + 115 = 451,(9)

where we have also made use of Corollary 4.11 (which implies that C2(4, 3, 2) = 7)
and Theorem 4.6 (which implies C2(4, 2, 1) = 5, C2(5, 2, 1) = 11, and C2(6, 2, 1) = 21).
Continuing in this manner, we arrive at the following bound:

Cq(n, k, 2) 6
q3− 1

q − 1
+

n−k−1∑
i=1

qn−k−i+1

⌈
qn−i− 1

qk−1− 1

⌉
.

Alternatively, consider the recursion g(n) = 4g(n− 1)+2n−2−1, bootstrapped with
g(4) = C2(4, 2, 1) = 5. Then Theorem 6.1 implies that C2(n, n−2, n−3) 6 g(n), and
solving the recursion, we obtain C2(n, n−2, n−3) 6 9 ·22n−8−2n−2−(22n−8−1)/3.

Advances in Mathematics of Communications Volume 5, No. 2 (2011), 161–176



170 Tuvi Etzion and Alexander Vardy

7. Covering numbers for specific parameters

This section contains two specific results: C2(5, 3, 2) = 27 and C2(7, 3, 2) 6 399.
Despite the small parameters involved, the proofs seem to require considerable effort.
Such proofs appear to be worth pursuing, however, since in conjunction with Theo-
rem 5.1 and Theorem 6.1, these two specific results imply many new upper and lower
bounds on q-covering numbers for q = 2 (cf. Section 8). The bound C2(7, 3, 2) 6 399
is also important in connection with the question of existence (or nonexistence) of the
Steiner structure Sq(7, 3, 2), as discussed in Section 9.

We already know from (7) that C2(5, 3, 2) 6 27. In what follows, we present a se-
ries of lemmas that eventually lead to the conclusion that C2(5, 3, 2) = 27.

Let S be a q-covering design C2(5, 3, 2) in F5
2 , with |S| = C2(5, 3, 2). For each non-

zero vector x∈F5
2 , we define S(x) =

{
V ∈ S : x∈V

}
.

Lemma 7.1. For all nonzero x∈F5
2 , we have |S(x)| > 5. Moreover, if |S(x)| = 5

for some x, then Vi ∩ Vj = {0, x} for all distinct Vi, Vj ∈ S(x).

Proof. There are 30 nonzero vectors y distinct from x. Each of the 30 pairs {x,y} de-
fines the two-dimensional subspace {0, x,y, x + y}; therefore it must be contained in
some subspace V of S(x). On the other hand, each given subspace V of S(x) contains
|V \{0, x}| = 6 such pairs. It follows that |S(x)| > 30/6. Moreover, if this holds with
equality, then the 6 pairs covered by the subspaces V1, V2, . . . , V5 in S(x) must be all
different, which implies that Vi ∩ Vj = {0, x}.

Lemma 7.2. Suppose that |S(x)| > 6 for all nonzero x∈F5
2 . Then |S| > 27.

Proof. Consider the sum
∑

x |S(x)| > 31·6, where the summation is over x∈F5
2 \{0}.

Each subspace V ∈ S is counted |V \{0}| = 7 times in this sum, so |S| > d186/7e.
In view of Lemma 7.2, let us henceforth consider the situation where |S(z)| = 5 for

some nonzero z∈F5
2 . For notational convenience, let us write:

S(z)
def
=
{
U1, U2, U3, U4, U5

}
and define Ui

def
= Ui\{0, z} for i = 1, 2, . . . , 5. With this, it follows from Lemma 7.1

that Ui∩ Uj = ∅ for all i 6= j, and therefore U1∪ U2∪ U3∪ U4∪ U5 = F5
2 \{0, z}.

Lemma 7.3. Consider a subspace V of S that does not contain z. Then |V ∩ Ui| = 3
for some i∈{1, 2, 3, 4, 5} and |V ∩ Uj | = 1 for all j 6= i in {1, 2, 3, 4, 5}.
Proof. Since U1,U2,U3,U4,U5 form a partition of F5

2 \{0, z} and V \{0} is a subset
of F5

2 \{0, z}, we have
∑5
i=1 |V ∩ Ui| = 7. Furthermore, since

dim
(
V ∩ Ui

)
= dimV + dimUi − dim

(
V + Ui

)
> 3 + 3− 5 = 1,

we must have |V ∩Ui| = 2 or |V ∩Ui| = 4 for all i. This implies that |V ∩ Ui| = 1 or
|V ∩ Ui| = 3 for all i∈{1, 2, 3, 4, 5}, and the lemma follows.

Next, let µ(Ui) denote the number of subspaces V of S that intersect Ui in exact-
ly three points. That is, µ(Ui) =

∣∣{V ∈ S : |V ∩ Ui| = 3}
∣∣. Further, let us assume

without loss of generality that µ(U1) 6 µ(U2) 6 µ(U3) 6 µ(U4) 6 µ(U5).

Lemma 7.4. Suppose that µ(U1)> 5. Then |S| > 30.

Proof. By Lemma 7.3, each subspace V in S\S(z) intersects exactly one Ui in three
points. Hence |S| = |S(z)|+

∑5
i=1 µ(Ui) > 5 + 5µ(U1) > 30.
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Lemma 7.5. Suppose that µ(U1) = 0. Then |S| > 29.

Proof. Let us write U1 = {x1, x2, . . . , x6}. We know from Lemma 7.1 that |S(xi)| > 5
for all i. Thus, for each i, there are at least 5 subspaces in S that contain xi. Of course,
one of these subspaces is U1. We claim that the others are all different — that is, the
sets S(xi)\{U1} are disjoint. Indeed, assume to the contrary that there exists a sub-
space V in S\{U1} that contains both xi and xj . But then |V ∩ U1| > 2, in contradic-
tion to Lemma 7.3 and the assumption that µ(U1) = 0. This establishes our claim
which, in turn, implies that |S| > |S(z)|+

∑6
i=1 |S(xi)\{U1}| > 5 + 6 ·4 = 29.

Lemma 7.6. Suppose that µ(U1) = 1. Then |S| > 27.

Proof. The proof is similar to that of Lemma 7.5, except that now there is exactly
one subspace V in S\{U1} that contains 3 elements from the set U1 = {x1, x2, . . . , x6}.
This subspace is counted thrice in

∑6
i=1 |S(xi)\{U1}| while all the other subspaces of

S\S(z) are counted at most once. Hence |S| > |S(z)|+
∑6
i=1 |S(xi)\{U1}| − 2 > 27.

In view of Lemma 7.4, Lemma 7.5, and Lemma 7.6, it remains to deal with the case
where µ(U1)∈{2, 3, 4}. This case requires an elaborate analysis, during which
we will make use of the next two lemmas.

Lemma 7.7. Suppose that µ(U1)> 1 and consider a subspace V of S\{U1} such that
|V ∩ U1| = 3. Then |S(x)| > 6 for all x ∈ (V ∩ U1).

Proof. By Lemma 7.1, if |S(x)| = 5 then any two subspaces of S that contain x inter-
sect in exactly two points, namely {0, x}. However, in the situation at hand, both V
and U1 contain x and |V ∩ U1| = 4.

Lemma 7.8. Suppose that µ(U1)> 2 and consider two subspaces V1, V2 of S\{U1}
such that |V1 ∩ U1| = |V2 ∩ U1| = 3. Then |S(x)| > 7 for all x ∈ (V1∩V2 ∩ U1).

Proof. Assume the contrary that |S(x)|< 7. Then |S(x)| = 6 by Lemma 7.7, and the-
refore, in addition to V1, V2 and U1, the vector x is contained in three other subspaces
of S, say V3, V4, V5. By Lemma 7.3, each of the five subspaces V1, V2, V3, V4, V5 inter-
sects exactly one of U1,U2,U3,U4,U5 in three points and all the others in one point.
Since |V1∩U1| = |V2∩U1| = 3, this implies that at least one of the sets U2,U3,U4,U5
intersects each of V1, V2, V3, V4, V5 in exactly one point. W.l.o.g., let U5 be this set.
Then U5 contains a nonzero vector y that does not belong to any of V1, V2, V3, V4, V5.
Now consider the two-dimensional subspace {0, x,y, x + y}, which must be contained
in some subspace of S(x). But S(x) = {U1, V1, V2, V3, V4, V5} and none of its elements
contains y, a contradiction.

Lemma 7.9. Suppose that µ(U1)∈{2, 3, 4}. Then |S| > 27.

Proof. Henceforth, in order to simplify notation, let us denote m
def
= µ(U1). Consider

the following bipartite graph G. The left vertices of G are the elements of the set
U1 = {x1, x2, . . . , x6}, and the right vertices of G are the subspaces V of S such that
|V ∩ U1| = 3. Thus there are 6 left vertices and m right vertices, say V1, V2, . . . , Vm.
There is an edge {xi,Vj} in G iff xi∈Vj . Thus the total number of edges in G is 3m.
For each xi∈ U1, let deg(xi) denote the degree of xi in G. Note that if deg(xi) > 1,
then |S(xi)|> 6 by Lemma 7.7 and if deg(xi) > 2, then |S(xi)|> 7 by Lemma 7.8. Let
νd denote the number of elements xi in U1 with deg(xi) = d. The equality

(10) ν1 + 2ν2 + · · ·+mνm = 3m

is easily obtained by counting the edges of G (note that the total number of edges
is 3m, and deg(xi) 6 m for all i, since m is the number of right vertices in G).
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We now proceed as in Lemma 7.6 and consider the sum
∑6
i=1 |S(xi)\{U1}|. Each of

the m subspaces V1, V2, . . . , Vm that intersect U1 in 3 points is counted three times in
this sum, while all other subspaces of S\S(z) are counted at most once. Hence

|S| > |S(z)| +

6∑
i=1

|S(xi)\{U1}| − 2m

> 5 + 6 ·4 + ν1 + 2(ν2 + ν3 + · · ·+ νm)− 2m,

where the second inequality follows from Lemma 7.7 and Lemma 7.8. Therefore, to
prove that |S| > 27, it suffices to show that ν1 + 2(ν2 + ν3 + · · ·+ νm) > 2m− 2.
Consider minimizing the function ν1 + 2(ν2 + ν3 + · · ·+ νm) subject to the constraint
in (10). It is easy to see that the solution to this minimization problem is given by
ν1 + 2(ν2 + ν3 + · · ·+ νm) = 6 for all m > 2 (obtained for ν1 = ν2 = · · · = νm−1 = 0
and νm = 3). Since 2m− 2 6 6 for m∈{2, 3, 4}, the lemma follows.

Theorem 7.10. C2(5, 3, 2) = 27.

Proof. As before, let S be a q-covering design C2(5, 3, 2) in F5
2 , with |S| = C2(5, 3, 2).

The cases considered in Lemma 7.2, Lemma 7.4, Lemma 7.5, Lemma 7.6, and Lem-
ma 7.9 are exhaustive, and in each case we have proved that |S| > 27. The fact that
C2(5, 3, 2) 6 27 follows from the construction in (7).

Theorem 7.10 stems from an elaborate proof of a lower bound on C2(n, k, r) for
a specific set of parameters. In contrast, the next result in this section is an explicit
construction, which gives an upper bound on C2(n, k, r) for a specific set of param-
eters. Our construction is based upon difference sets. Specifically, let

A1 = {0, 1, 4, 16},(11)

A2 = {0, 2, 8, 32},(12)

A3 = {0, 5, 27, 40},(13)

A4 = {0, 7, 44, 53},(14)

A5 = {0, 11, 29, 49}.(15)

Lemma 7.11. Define Di
def
=
{
a− b (mod 63) : a, b ∈Ai, a 6= b

}
for i = 1, 2, . . . , 5.

Then |Di| = 12 for all i = 1, 2, . . . , 5, and D1∪D2∪D3∪D4∪D5 = Z63\{0, 21, 42}.
Proof. Follows by direct verification.

Theorem 7.12. C2(7, 3, 2) 6 399.

Proof. Let α be a root of the primitive polynomial x6 +x+1, and hence a primitive
element in F64. We represent F7

2 as F7
2 =

{
(β, 0) : β ∈F64

}
∪
{

(β, 1) : β ∈F64

}
. We

furthermore introduce the following notation: given a subset X of F7
2 and an element

γ of F64, we define γX =
{

(γβ, 0) : (β, 0)∈X
}
∪
{

(γβ, 1) : (β, 1)∈X
}

. Notice that

ifX is a subspace of F7
2 , then so is γX for all γ ∈F64. With reference to (11)–(15), let

us now construct the sets X1,0, X2,0, X3,0, X4,0, X5,0 as follows:

X1,0 =
{
0, (1 + α1, 0), (1 + α4, 0), (1 + α16, 0), (1, 1), (α1, 1), (α4, 1), (α16, 1)

}
,

X2,0 =
{
0, (1 + α2, 0), (1 + α8, 0), (1 + α32, 0), (1, 1), (α2, 1), (α8, 1), (α32, 1)

}
,

X3,0 =
{
0, (1 + α5, 0), (1 + α27, 0), (1 + α40, 0), (1, 1), (α5, 1), (α27, 1), (α40, 1)

}
,

X4,0 =
{
0, (1 + α7, 0), (1 + α44, 0), (1 + α53, 0), (1, 1), (α7, 1), (α44, 1), (α53, 1)

}
,

X5,0 =
{
0, (1 + α11, 0), (1 + α29, 0), (1 + α49, 0), (1, 1), (α11, 1), (α29, 1), (α49, 1)

}
.
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Given the sets A1, A2, A3, A4, A5 in (11) – (15), it is easy to verify that α+ α4 + α16

= α2 +α8 +α32 = α5 +α27 +α40 = α7 +α44 +α53 = α11 +α29 +α49 = 1. This, in
turn, implies that each of the sets X1,0, X2,0, X3,0, X4,0, X5,0 is a three-dimensional
subspace of F7

2 . Let us now construct 62 · 5 = 310 additional three-dimensional sub-
spaces of F7

2 as follows:

(16) Xi,j
def
= αjXi,0 for i = 1, 2, . . . , 5 and j = 1, 2, . . . , 62,

and let X denote the set of all the 5+310 = 315 subspaces Xi,j . Next, we construct
a three-dimensional subspace Y0 of F7

2 as follows:

Y0 =
{
0, (1, 0), (α21, 0), (α42, 0), (0, 1), (1, 1), (α21, 1), (α42, 1)

}
,

and define Yj
def
= αjY0 for j = 1, 2, . . . , 20. Let Y be the set of all the 21 subspaces Yj .

Finally, construct a three-dimensional subspace Z0 of F7
2 as follows:

Z0 =
{
0, (1, 0), (α, 0), (α4, 0), (α6, 0), (α16, 0), (α24, 0), (α33, 0)

}
,

and define Zj
def
= αjZ0 for j = 1, 2, . . . , 62. Let Z be the set of all the 63 subspaces Zj .

The resulting q-covering design C2(7, 3, 2) in F7
2 is S = X ∪ Y ∪ Z. It is clear that

|S| = 315 + 21 + 63 = 399. The fact that every two-dimensional subspace of F7
2 is

contained in some subspace of S can be verified using a simple computer program.
This fact can be also proved by hand; we give only a sketch of the proof here. It is

easy to see that each of the 63 subspaces of the form
{
0, (0, 1), (αj , 1), (αj , 0)

}
is con-

tained in exactly one subspace of Y. Moreover, it follows from Lemma 7.11 that ev-
ery pair of vectors of the form {(αa,1), (αb,1)}, where a,b are distinct elements of Z63,
is contained in exactly one subspace of X ∪ Y. Therefore, each of the

(
63
2

)
= 1953

subspaces of the form
{
0, (αa, 1), (αb, 1), (αa+ αb, 0)

}
is contained in exactly one

subspace of X ∪Y. Note that
[
7
2

]
2
− 63− 1953 =

[
6
2

]
2

and, indeed, it remains to con-
sider the

[
6
2

]
2

= 651 two-dimensional subspaces that belong to F6
2 ×{0}. Of these,

each of the 4 · 63 + 21 = 273 subspaces of the form:{
0, (αj, 0), (αj+7, 0), (αj+26, 0)

}
for j = 0, 1, . . . , 62,{

0, (αj, 0), (αj+9, 0), (αj+45, 0)
}

for j = 0, 1, . . . , 62,{
0, (αj, 0), (αj+11, 0), (αj+25, 0)

}
for j = 0, 1, . . . , 62,{

0, (αj, 0), (αj+13, 0), (αj+35, 0)
}

for j = 0, 1, . . . , 62,{
0, (αj, 0), (αj+21, 0), (αj+42, 0)

}
for j = 0, 1, . . . , 20

belongs to at least one subspace of X ∪Y. The remaining 378 two-dimensional sub-
spaces of F6

2 ×{0} have the form
{
0,(αj, 0), (α2i+j, 0), (α3·2i+1+j, 0)

}
for i = 0,1, . . . ,5

and j = 0, 1, . . . , 62, and each of them is contained in at least one subspace of Z.

8. Tables of upper and lower bounds on C2(n, k, r)

In this section, we compile tables of upper and lower bounds on q-covering num-
bers Cq(n, k, r), for q = 2 and n 6 8. The lower bounds follow from Theorem 4.6, Co-
rollary 4.11, Theorem 5.1, Corollary 5.2, Theorem 5.3, and Theorem 7.10. The upper
bounds follow from Theorem 4.6, Corollary 4.11, Theorem 6.1, and Theorem 7.12. In
the tables below, we also made use of the trivial identity C2(n, k, k) =

[
n
k

]
2

which de-
termines the entries on the main diagonals. Another trivial identity is C2(n, n, r) = 1.
Finally, the values of C2(n, k, r) for n 6 3 are also trivial.
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Bounds on C2(4, k, r)

r k
3 2 1

3 15

2 7 35

1 3 5 15

Bounds on C2(5, k, r)

r k
4 3 2 1

4 31

3 15 155

2 7 27 155

1 3 5 11 31

Bounds on C2(6, k, r)

r k
5 4 3 2 1

5 63

4 31 651

3 15 114−123 1395

2 7 21−27 99−115 651

1 3 5 9 21 63

Bounds on C2(7, k, r)

r k
6 5 4 3 2 1

6 127

5 63 2667

4 31 468−523 11811

3 15 87−123 839−1043 11811

2 7 21−27 77−99 381−399 2667

1 3 5 9 19 43 127

Bounds on C2(8, k, r)

r k
7 6 5 4 3 2 1

7 255

6 127 10795

5 63 1895−2155 97155

4 31 353−523 6902−8867 200787

3 15 85−123 634−915 6477−7427 97155

2 7 21−27 75−99 323−403 1567−1775 10795

1 3 5 9 17 37 85 255

We observe that the upper and lower bounds on C2(n, k, r) coincide for all n 6 5
(this is due in large part to the proof that C2(5, 3, 2) = 27 in Theorem 7.10). Thus
the smallest unresolved case appears to be 21 6 C2(6, 4, 2) 6 27. The most interest-
ing unresolved case is 381 6 C2(7, 3, 2) 6 399, as discussed in the next section.

9. Conclusions and open problems

We have introduced and studied the q-analogs of covering designs and Turán de-
signs. We have also considered the q-analogs of Steiner systems, and derived a strong
necessary condition for their existence. We conclude this paper with several open
problems that are directly related to our results herein.

• Does a Steiner structure S2(2, 3, 7) exist? Thomas studied this question in
detail in [19, 20], but did not arrive at a definitive conclusion regarding the
existence of S2(2, 3, 7). Note that if S2(2, 3, 7) exists it must contain 381
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subspaces. Thus the q-covering design C2(7, 3, 2) with 399 subspaces (con-
structed in Theorem 7.12) comes tantalizingly close. The closest result from
the other direction — that is, a packing of three-dimensional subspaces of F7

2

such that no two intersect in the same two-dimensional subspace — is due to
Kohnert and Kurz [12], who showed that it is possible to pack at least 304
three-dimensional subspaces of F7

2 in this manner.

• Do any nontrivial Steiner structures S2(r, k, n) with r> 2 exist? S2(2, 3, 7), if
it exists, would be the smallest possible example of such a structure. However,
if it turns out that S2(2, 3, 7) does not exist, this would not preclude the ex-
istence of larger nontrivial Steiner structures with r> 2.

• Another set of parameters for which one might expect to determine the q-cov-
ering numbers exactly is C2(n, n− 2, 2). From the tables compiled in the previ-
ous section, we see that 21 6 C2(n, n− 2, 2) 6 27 for n = 5, 6, 7, 8. This is not
a coincidence — in fact, this is true for all n> 5. By Corollary 5.2, we have

C2(n, n− 2, 2) >

⌈
2n−1

2n−2−1

⌈
2n−1−1

2n−3−1

⌉⌉
= 21

for all n> 6. By Lemma 4.2, we have C2(n, n− 2, 2) 6 C2(5, 3, 2) and from (7),
we know that C2(5, 3, 2) = 27. Can the method of proof introduced in Theo-
rem 7.10 be extended to larger values of n, in order to improve upon the lower
bound C2(n, n− 2, 2) > 21?

• The construction method introduced in Theorem 7.12 is based on cyclic shifts
in F64 (if we map the nonzero elements of a vector space V⊂F64 into the corre-
sponding binary characteristic vector xV = (x0, x1, . . . , x62), then multiplica-
tion by an element of F64, as in (16), corresponds to a cyclic shift of xV ). In the
case of Theorem 7.12, such cyclic shifts produce a very efficient covering. We
note that certain codes (packings) based upon cyclic shifts were constructed
in [8] and [12]. However, in both cases, the methods used are ad-hoc. Is there
a general construction method for such “cyclic” packings and/or coverings?
In particular, can useful bounds on the parameters of such a packing or cov-
ering be obtained using algebraic techniques?
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