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Error-Correcting Codes in Projective Spaces Via
Rank-Metric Codes and Ferrers Diagrams

Tuvi Etzion, Fellow, IEEE, and Natalia Silberstein

Abstract—Coding in the projective space has received recently a
lot of attention due to its application in network coding. Reduced
row echelon form of the linear subspaces and Ferrers diagram can
play a key role for solving coding problems in the projective space.
In this paper, we propose a method to design error-correcting codes
in the projective space. We use a multilevel approach to design our
codes. First, we select a constant-weight code. Each codeword de-
fines a skeleton of a basis for a subspace in reduced row echelon
form. This skeleton contains a Ferrers diagram on which we de-
sign a rank-metric code. Each such rank-metric code is lifted to
a constant-dimension code. The union of these codes is our final
constant-dimension code. In particular, the codes constructed re-
cently by Koetter and Kschischang are a subset of our codes. The
rank-metric codes used for this construction form a new class of
rank-metric codes. We present a decoding algorithm to the con-
structed codes in the projective space. The efficiency of the de-
coding depends on the efficiency of the decoding for the constant-
weight codes and the rank-metric codes. Finally, we use puncturing
on our final constant-dimension codes to obtain large codes in the
projective space which are not constant-dimension.

Index Terms—Constant-dimension codes, constant-weight
codes, Ferrers diagram, identifying vector, network coding, pro-
jective space codes, puncturing, rank-metric codes, reduced row
echelon form.

I. INTRODUCTION

T HE projective space of order over the finite field , de-
noted , is the set of all subspaces of the vector space

. Given a nonnegative integer , the set of all subspaces
of that have dimension is known as a Grassmannian, and
usually denoted by . Thus, .
It turns out that the natural measure of distance in is given
by

for all . It is well known (cf. [1], [2]) that the func-
tion above is a metric; thus, both and can be
regarded as metric spaces. Given a metric space, one can define
codes. We say that is an code in projec-
tive space if and for all .
If an code is contained in for some ,
we say that is an constant-dimension code. The
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, respectively , codes in projective space
are akin to the familiar codes in the Hamming space, respec-
tively (constant-weight) codes in the Johnson space, where the
Hamming distance serves as the metric.

Koetter and Kschischang [2] showed that codes in are
precisely what is needed for error-correction in random network
coding: an code can correct any packet errors (the
packet can be overwritten), which is equivalent to insertions
and deletions of dimensions in the transmitted subspace, and
any packet erasures introduced (adversarially) anywhere in
the network as long as (see [3] for more details).
This is the motivation to explore error-correcting codes in
[4]–[11]. Koetter and Kschischang [2] gave a Singleton-like
upper bound on the size of such codes and a Reed–Solomon-like
code which asymptotically attains this bound. Silva, Koetter,
and Kschischang [3] showed how these codes can be described
in terms of rank-metric codes [12], [13]. The related construc-
tion is our starting point in this paper. Our goal is to gener-
alize this construction in the sense that the codes of Koetter
and Kschischang will be subcodes of our codes and all our
codes can be partitioned into subcodes, each one of them is
a Koetter–Kschischang-like code. In the process, we describe
some tools that can be useful to handle other coding problems
in . We also define a new type of rank-metric codes and
construct optimal such codes. Our construction for constant-di-
mension codes and projective space codes uses a multilevel ap-
proach. This approach requires a few concepts which will be
described in the following sections.

The rest of this paper is organized as follows. In Section II,
we define the reduced row echelon form of a -dimensional sub-
space and its Ferrers diagram. The reduced row echelon form
is a standard way to describe a linear subspace. The Ferrers
diagram is a standard way to describe a partition of a given
positive integer into positive integers. It appears that the Fer-
rers diagrams can be used to partition the subspaces of
into equivalence classes [14], [15]. In Section III, we present
rank-metric codes which will be used for our multilevel con-
struction. Our new method requires rank-metric codes in which
some of the entries are forced to be zeros due to constraints
given by the Ferrers diagram. We first present an upper bound
on the size of such codes. We show how to construct some
rank-metric codes which attain this bound. In Section IV, we
describe in details the multilevel construction of the constant-di-
mension codes. We start by describing the connection of the
rank-metric codes to constant-dimension codes. This connec-
tion was observed before in [2], [3], [6], [7]. We proceed to de-
scribe the multilevel construction. First, we select a binary con-
stant-weight code . Each codeword of defines a skeleton of a
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basis for a subspace in reduced row echelon form. This skeleton
contains a Ferrers diagram on which we design a rank-metric
code. Each such rank-metric code is lifted to a constant-dimen-
sion code. The union of these codes is our final constant-di-
mension code. We discuss the parameters of these codes and
also their decoding algorithms. In Section V, we generalize the
well-known concept of a punctured code for a code in the pro-
jective space. Puncturing in the projective space is more compli-
cated than its counterpart in the Hamming space. The punctured
codes of our constant-dimension codes have larger size than the
codes obtained by using the multilevel approach described in
Section IV. We discuss the parameters of the punctured code
and also its decoding algorithm. Finally, in Section VI, we sum-
marize our results and present several problems for further re-
search.

II. REDUCED ECHELON FORM AND FERRERS DIAGRAM

In this section, we give the definitions for two structures
which are useful in describing a subspace in . The re-
duced row echelon form is a standard way to describe a linear
subspace. The Ferrers diagram is a standard way to describe a
partition of a given positive integer into positive integers.

A matrix is said to be in row echelon form if each nonzero
row has more leading zeros than the previous row.

A matrix with rank is in reduced row echelon form if
the following conditions are satisfied.

• The leading coefficient of a row is always to the right of
the leading coefficient of the previous row.

• All leading coefficients are ones.
• Every leading coefficient is the only nonzero entry in its

column.

A -dimensional subspace of can be represented by a
generator matrix whose rows form a basis for . We usu-

ally represent a codeword of a projective space code by such a
matrix. There is exactly one such matrix in reduced row echelon
form and it will be denoted by .

Example 1: We consider the three-dimensional subspace
of with the following eight elements:

The basis of can be represented by a matrix whose rows
form a basis for the subspace. There are 168 different matrices
for the 28 different basis. Many of these matrices are in row
echelon form. One of them is

Exactly one of these 168 matrices is in reduced row echelon
form

A Ferrers diagram represents partitions as patterns of dots
with the th row having the same number of dots as the th term
in the partition [15]–[17]. A Ferrers diagram satisfies the fol-
lowing conditions.

• The number of dots in a row is at most the number of dots
in the previous row.

• All the dots are shifted to the right of the diagram.

The number of rows (columns) of the Ferrers diagram is the
number of dots in the rightmost column (top row) of . If the
number of rows in the Ferrers diagram is and the number of
columns is we say that it is an Ferrers diagram.

If we read the Ferrers diagram by columns we get another
partition which is called the conjugate of the first one. If the
partition forms an Ferrers diagram then the conjugate
partition forms an Ferrers diagram.

Example 2: Assume we have the partition
of . The Ferrers diagram of this partition is given by

The number of rows in is five and the number of columns is
six. The conjugate partition is the partition
of and its Ferrers diagram is given by

Remark 1: Our definition of Ferrers diagram is slightly dif-
ferent from the usual definition [15]–[17], where the dots in each
row are shifted to the left of the diagram.

Each -dimensional subspace of has an identifying
vector . is a binary vector of length and weight

, where the ones in are in the positions (columns) where
has the leading ones (of the rows).

Example 3: Consider the three-dimensional subspace of
Example 1. Its identifying vector is .

Remark 2: We can consider an identifying vector for
some -dimensional subspace as a characteristic vector of a

-subset. This coincides with the definition of rank- and order-
preserving map from onto the lattice of subsets of an

-set, given by Knuth [14] and discussed by Milne [18].

The following lemma is easily observed.
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Lemma 1: Let be a -dimensional linear subspace of
its identifying vector, and the positions

in which has ones. Then for each nonzero element ,
the leftmost one in is in position for some .

Proof: Clearly, for each , there exists an
element whose leftmost one is in position . Moreover,

are linearly independent. Assume the contrary,
that there exists an element whose leftmost one is in
position . This implies that
are linearly independent and the dimension of is at least ,
a contradiction.

The following result will play an important role in the proof
that our constructions for error-correcting codes in the projec-
tive space have the desired minimum distance.

Lemma 2: If and are two subspaces of with iden-
tifying vectors and , respectively, then

, where denotes the Hamming dis-
tance between and .

Proof: Let be the positions in which
has ones and has zeros and be the posi-
tions in which has ones and has zeros. Clearly,

. Therefore, by Lemma 1,
contains linearly independent vectors which
are not contained in . Similarly, contains linearly
independent vectors which are not contained in . Thus,

.

The echelon Ferrers form of a vector of length and weight
, is the matrix in reduced row echelon form with

leading entries (of rows) in the columns indexed by the nonzero
entries of and “ ” in all entries which do not have terminals
zeros or ones. A “ ” will be called in the sequel a dot. This
notation is also given in [15], [17]. The dots of this matrix form
the Ferrers diagram of . If we substitute elements of
in the dots of we obtain a -dimensional subspace of

. will be called also the echelon Ferrers form of
.

Example 4: For the vector , the echelon Ferrers
form is the following matrix:

has the following Ferrers diagram:

Each binary word of length and weight corresponds to
a unique matrix in an echelon Ferrers form. There are a
total of binary vectors of length and weight and hence
there are different matrices in echelon Ferrers form.

III. FERRERS DIAGRAM RANK-METRIC CODES

In this section, we start by defining the rank-metric codes.
These codes are strongly connected to constant-dimension
codes by a lifting construction described by Silva, Kschis-
chang, and Koetter [3]. We define a new concept which is a

Ferrers diagram rank-metric code. Ferrers diagram rank-metric
codes will be the main building blocks of our projective space
codes. These codes present some questions which are of interest
in themselves.

For two matrices and over the rank distance
is defined by

A code is an rank-metric code if its codewords
are matrices over , they form a linear subspace of
dimension of , and for each two distinct codewords
and we have that . Rank-metric codes were
well studied [12], [13], [19]. It was proved (see [13]) that for
an rank-metric code we have

. This bound is attained for all possible
parameters and the codes which attain it are called maximum
rank distance codes (or MRD codes in short).

Let be a vector of length and weight and let be its
echelon Ferrers form. Let be the Ferrers diagram of .

is an Ferrers diagram, . A code is
an Ferrers diagram rank-metric code if all codewords
are matrices in which all entries not in are zeros, it
forms a rank-metric code with dimension , and minimum rank
distance . Let be the largest possible dimension of
an code.

Theorem 1: For a given , if is the number
of dots in , which are not contained in the first rows and are
not contained in the rightmost columns then
is an upper bound of .

Proof: For a given , let be the set of
the positions of which are not contained in the first rows
and are not contained in the rightmost columns. As-
sume the contrary that there exists an code . Let

be a set of linearly indepen-
dent codewords in . Since the number of linearly independent
codewords is greater than the number of entries in , there ex-
ists a nontrivial linear combination for which
the entries of are equal zeros. is not the all-zeros code-
word since the ’s are linearly independent. has outside
exactly rows and columns. These rows can con-
tribute at most to the rank of and the columns can
contribute at most to the rank of . Therefore, is a
nonzero codeword with rank less than , a contradiction.

Hence, an upper bound on is for each
. Thus, an upper bound on the dimension is

.

Conjecture 1: The upper bound of Theorem 1 is attainable
for any given set of parameters and .

If we use or in Theorem 1 we obtain the
following result.

Corollary 1: An upper bound on is the minimum
number of dots that can be removed from such that the dia-
gram remains with at most rows of dots or at most
columns of dots.
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Remark 3: MRD codes are one class of Ferrers
diagram rank-metric codes which attain the bound of Corollary
1 with equality. In this case, the Ferrers diagram has dots.

Example 5: Consider the following Ferrers diagram:

and . By Corollary 1, we have an upper bound:
. But, if we use in Theorem 1 then we

have a better upper bound: . This upper bound
is attained with the following generator matrix of an
rank-metric code:

When the bound of Theorem 1 is attained? We start with a
construction of Ferrers diagram rank-metric codes which attain
the bound of Corollary 1. Assume we have an

Ferrers diagram and that the minimum in the bound
of Corollary 1 is obtained by removing all the dots from the

leftmost columns of . Hence, only the dots in the
rightmost columns will remain. We further assume that

each of the rightmost columns of have dots. The
construction which follows is based on the construction of MRD
-cyclic rank-metric codes given by Gabidulin [12].

A code of length over is called a -cyclic code if
implies that .

For a construction of rank-metric codes, we use
an isomorphism between the field with elements, , and
the set of all -tuples over . We use the obvious isomor-
phism by the representation of an element in the extension
field as , where is an element in the
ground field . Usually, we will leave to the reader to realize
when the isomorphism is used as this will be easily verified from
the context.

A codeword in an rank-metric code , can be
represented by a vector , where
and the generator matrix of is a matrix, . It
was proved by Gabidulin [12] that if is an MRD -cyclic code
then the generator polynomial of is the linearized polynomial

, where
and its generator matrix has the form

Hence, a codeword derived from the
information word , where , i.e.,

, has the form

We define an rank-metric code
derived from as follows:

Remark 4: is also an MRD code.

We construct an Ferrers diagram rank-metric code
, where is an Ferrers diagram. Let

be the number of dots in column of , where the columns
are indexed from left to right. A codeword of is derived from
a codeword of by satisfying a set of equations implied
by

...
...

...
... (1)

where is a column vector of length

and denotes the transpose of the vector .
It is easy to verify that is a linear code.

By (1) we have a system of equations with
variables, . The first equations imply that

for . The next equations
determine the values of the ’s, , as follows.
From the next equation

(this is the next equation after we substitute for
), we have that has solutions in , where each

element of is represented as an -tuple over . Given a
solution of , the next equation

has solutions for . Therefore, we have that

have solutions and hence the
dimension of is over . Note, that since each of
the rightmost columns of have dots, i.e.,

(no zeros in the related equations), it
follows that any set of values for the ’s cannot cause any
contradiction in the last equations. Also, since the values
of the variables are determined for the
last equations, the values for the related dots
are determined. Hence, they do not contribute to the number
of solutions for the set of equations. Thus, we have the
following result.

Theorem 2: Let be an , Ferrers diagram.
Assume that each one of the rightmost columns of
has dots, and the th column from the left of has dots.
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Then is an code which attains the bound
of Corollary 1.

Remark 5: For any solution of we have that
and

.

Remark 6: For any rank-metric code
, the codewords which have zeros in all the entries which are

not contained in form an code. Thus, we
can use also any MRD codes, e.g., the codes described in [13],
to obtain a proof for Theorem 2.

Remark 7: Since is a subcode of an MRD code then we
can use the decoding algorithm of the MRD code for the de-
coding of our code. Also note, that if is an
Ferrers diagram then we apply our construction for the
Ferrers diagram of the conjugate partition.

When , the bounds and the construction are trivial. If
, then by definition the rightmost column and the top row

of an Ferrers diagram always has dots and dots, re-
spectively. It implies that the bound of Theorem 1 is always at-
tained with the construction if . This is the most interesting
case since in this case the improvement of our constant-dimen-
sion codes compared to the codes in [2], [3] is the most impres-
sive (see Section IV-C). If , the improvement is relatively
small, but we will consider this case as it is of interest also from
a theoretical point of view. Some constructions can be given
based on the main construction and other basic constructions.
We will give two simple examples for .

Example 6: Consider the following Ferrers diagram:

The upper bound on is . It is attained with the
following basis with three matrices.

Example 7: Consider the following Ferrers diagram

The upper bound on is . It is attained with the
basis consisting of four matrices, from which three are
from Example 6 and the last one is

As for more constructions, some can be easily generated by
the interested reader, but whether the upper bound of Theorem
1 can be attained for all parameters remains an open problem.

IV. ERROR-CORRECTING CONSTANT-DIMENSION CODES

In this section, we will describe our multilevel construction.
The construction will be applied to obtain error-correcting
constant-dimension codes, but it can be adapted to construct
error-correcting projective space codes without any modifica-
tion. This will be discussed in the next section. We will also
consider the parameters and decoding algorithms for our codes.
Without loss of generality, we will assume that . This
assumption can be made as a consequence of the following
lemma [4], [11].

Lemma 3: If is an constant-dimension code
then , where is the orthogonal sub-
space of , is an constant-dimension code.

A. Lifted Codes

Koetter and Kschischang [2] gave a construction for constant-
dimension Reed–Solomon-like codes. This construction can be
presented more clearly in terms of rank-metric codes [3]. Given
a rank-metric code we form an
constant-dimension code by lifting , i.e.,

, where is the identity matrix [3]. We will call the
code the lifted code of . Usually is not maximal and it
can be extended. This extension requires to design rank-metric
codes, where the shape of a codeword is a Ferrers diagram rather
than a matrix. We would like to use the largest
possible Ferrers diagram rank-metric codes. In the appropriate
cases, e.g., when , we will use the codes constructed in
Section III for this purpose.

Assume we are given an echelon Ferrers form of a
binary vector , of length and weight , with a Ferrers diagram

and a Ferrers diagram rank-metric code . is lifted to
a constant-dimension code by substituting each codeword

in the columns of which correspond to the zeros
of . Note, that depending on it might implies conjugating
first. Unless starts with a one and ends with a zero (the cases
in which is a Ferrers diagram) we also need
to expand the matrices of the Ferrers diagram rank-metric code
to matrices (which will be lifted), where is in
their upper right corner (and the new entries are zeros). As an
immediate consequence from [3] we have the following.

Lemma 4: If is an Ferrers diagram rank-metric
code then its lifted code , related to an echelon Ferrers
form , is an constant-dimension code.

Example 8: For the word , its echelon Ferrers
form
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the matrix

is lifted to the three-dimensional subspace with the gen-
erator matrix

For the word , its echelon Ferrers form

the matrix

is lifted to the three-dimensional subspace with the gen-
erator matrix

The code described in [3] is the same as the code described in
Section III, where the identifying vector is . If our
lifted codes are the codes described in Section III then the same
decoding algorithm can be applied. Therefore, the decoding in
[3] for the corresponding constant-dimension code can be ap-
plied directly to each of our lifted constant-dimension codes in
this case, e.g., it can always be applied when . It would be
worthwhile to permute the coordinates in a way that the identity
matrix will appear in the first columns, from the left, of the
reduced row echelon form, and will appear in the upper right
corner of the matrix. The reason is that the decoding of
[3] is described on such matrices.

B. Multilevel Construction

Assume we want to construct an constant-di-
mension code .

The first step in the construction is to choose a binary con-
stant-weight code of length , weight , and minimum dis-
tance . This code will be called the skeleton code. Any con-
stant-weight code can be chosen for this purpose, but different
skeleton codes will result in different constant-dimension codes
with usually different sizes. The best choice for the skeleton
code will be discussed in the next subsection. The next three
steps are performed for each codeword .

The second step is to construct the echelon Ferrers form
.

The third step is to construct an Ferrers diagram
rank-metric code for the Ferrers diagram of . If
possible we will construct a code as described in Section III.

The fourth step is to lift to a constant-dimension code ,
for which the echelon Ferrers form of is .

Finally

As an immediate consequence of Lemmas 2 and 4, we have
the following theorem.

Theorem 3: is an constant-dimension code,
where .

Example 9: Let , and

a constant-weight code of length , weight , and minimum
Hamming distance . The echelon Ferrers forms of these four
codewords are

By Theorem 2, the Ferrers diagrams of these four echelon
Ferrers forms yield Ferrers diagram rank-metric codes of sizes

and respectively. Hence, we obtain a
constant-dimension code .

Remark 8: A code was obtained by computer
search [8]. Similarly, we obtain a code. A

code was obtained by computer search [8].

Example 10: Let be the codewords of weight in the
extended Hamming code with the following parity-

check matrix:

has 14 codewords with weight . Each one of these code-
words is considered as an identifying vector for the echelon Fer-
rers forms from which we construct the final
code . The 14 codewords of and their contribution for the
final code are given in the following table. The codewords are
taken in lexicographic order.
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C. Code Parameters

We now want to discuss the size of our constant-dimension
code, the required choice for the skeleton code , and compare
the size of our codes with the size of the codes constructed in
[2], [3].

The size of the final constant-dimension code depends
on the choice of the skeleton code . The identifying vector
with the largest size of corresponding rank-metric code is

. The corresponding rank-metric

code has dimension and hence it
contributes -dimensional subspaces to our
final code . These subspaces form the codes in [2], [3]. The
next identifying vector which contributes the most number of
subspaces to is

The number of subspaces it contributes depends on the bounds
presented in Section III. The rest of the code usually has fewer
codewords than those contributed by these two. Therefore, the
improvement in the size of the code compared to the code of [2]
is not dramatic. But, for most parameters, our codes are larger
than the best known codes. In some cases, e.g., when , our
codes are as good as the best known codes (see [4]) and suggest
an alternative construction. When and reasonably
small , the cyclic codes constructed in [4], [8] are larger.

Two possible alternatives for the best choice for the skeleton
code might be of special interest. The first one is for
and which is a power of two. We conjecture that the best
skeleton code is constructed from the codewords with weight

of the extended Hamming code for which the columns of the
parity-check matrix are given in lexicographic order. We gen-
eralize this choice of codewords from the Hamming code by
choosing a constant-weight lexicode [20]. Such a code is con-
structed as follows. All vectors of length and weight are
listed in lexicographic order. The code is generated by adding
to the code one codeword at a time. At each stage, the first
codeword of the list, that does not violate the distance constraint
with the other codewords of , is joined to . Lexicodes are not
necessarily the best constant-weight codes. For example, size of
the largest constant-weight code of length and weight is ,
while the lexicode with the same parameters has size . But,
the constant-dimension code derived from the lexicode is larger

than any constant-dimension code derived from any related code
of size .

The following table summarized the sizes of some of our
codes compared to previous known codes. In all these codes we
have started with a constant-weight lexicode in the first step of
the construction.

D. Decoding

The decoding of our codes is quite straightforward and it
mainly consists of known decoding algorithms. As we used a
multilevel coding we will also need a multilevel decoding. In
the first step, we will use a decoding for our skeleton code and
in the second step, we will use a decoding for the rank-metric
codes.

Assume the received word was a -dimensional subspace .
We start by generating its reduced row echelon form .
Given it is straightforward to find the identifying vector

. Now, we use the decoding algorithm for the constant-
weight code to find the identifying vector of the submitted

-dimensional subspace . If no more than errors occurred
then we will find the correct identifying vector. This claim is an
immediate consequence of Lemma 2.

In the second step of the decoding, we are given the received
subspace , its identifying vector , and the identifying
vector of the submitted subspace . We consider the ech-
elon Ferrers form , its Ferrers diagram , and the

Ferrers diagram rank-metric code associated with it.
We can permute the columns of , and use the same
permutation on , in a way that the identity matrix will
be in the left side. Now, we can use the decoding of the spe-
cific rank-metric code. If our rank-metric codes are those con-
structed in Section III then we can use the decoding as described
in [3]. It is clear now that the efficiency of our decoding de-
pends on the efficiency of the decoding of our skeleton code and
the efficiency of the decoding of our rank-metric codes. If the
rank-metric codes are MRD codes then they can be decoded effi-
ciently [12], [13]. The same is true if the Ferrers diagram metric
codes are those constructed in Section III as they are subcodes
of MRD codes and the decoding algorithm of the related MRD
code applied to them as well.

There are some alternative ways for our decoding, some of
which improve on the complexity of the decoding. For example,
we can make use of the fact that most of the code is derived from
two identifying vectors or that most of the rank-metric codes
are of relatively small size. One such case can be when all the
identity matrices of the echelon Ferrers forms are in consecutive
columns of the codeword (see [10]). We will not discuss it as the
related codes hardly improve on the codes in [2], [3].
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Finally, if we allow to receive a word which is an -dimen-
sional subspace then the same
procedure will work as long as . This is a
consequence of the fact that the decoding algorithm of [3] does
not restrict the dimension of the received word.

V. ERROR-CORRECTING PROJECTIVE SPACE CODES

In this section, our goal will be to construct large codes in
which are not constant-dimension codes. We first note

that the multilevel coding described in Section IV can be used
to obtain a code in . The only difference is that we should
start in the first step with a general binary code of length in
the Hamming space as a skeleton code. The first question which
will arise in this context is whether the method is as good as for
constructing codes in . The answer can be inferred from
the following example.

Example 11: Let and , and consider the
Hamming code with the parity-check matrix

By using the multilevel coding with this Hamming code we
obtain a code with minimum distance and size in .

As we shall see in the sequel, this code is much smaller than
a code that will be obtained by puncturing. We have also gener-
ated codes in the projective space based on the multilevel con-
struction, where the skeleton code is a lexicode. The constructed
codes appear to be much smaller than the codes obtained by
puncturing. Puncturing of a code (or union of codes with dif-
ferent dimensions and the required minimum distance) obtained
in Section IV results in a projective space code . If the min-
imum distance of is then the minimum distance of is

. has a similar structure to a code obtained by the mul-
tilevel construction (similar structure in the sense that the iden-
tifying vectors of the codewords can form a skeleton code). But
the artificial “skeleton code” can be partitioned into pair of code-
words with Hamming distance one, while the distance between
two codewords from different pairs is at least . This prop-
erty yields larger codes by puncturing, sometimes with double
size, compared to codes obtained by the multilevel construction.

A. Punctured Codes

Puncturing and punctured codes are well known in the Ham-
ming space. An code in the Hamming space is a code
of length , minimum Hamming distance , and codewords.
Let be an code in the Hamming space. Its punctured
code is obtained by deleting one coordinate of . Hence,
there are punctured codes and each one is an
code. In the projective space there is a very large number of
punctured codes for a given code and in contrary to the Ham-
ming space the sizes of these codes are usually different.

Let be an -dimensional subspace of such that the unity
vector with a one in the th coordinate is not an element in .
The -coordinate puncturing of is defined as the
-dimensional subspace of obtained from by deleting

coordinate from each vector in . This puncturing of a sub-
space is akin to puncturing a code in the Hamming space by
the th coordinate.

Let be a code in and let be an -dimensional
subspace of . Let be the generator matrix
of (in reduced row echelon form) and let be the position of
the unique zero in . Let be an element such that

. We define the punctured code

where

and

Remark 9: If was constructed by the multilevel construc-
tion of Section IV then the codewords of and can be
partitioned into related lifted codes of Ferrers diagram rank-
metric codes. Some of these codes are cosets of the linear Fer-
rers diagram rank-metric codes.

The following theorem can be easily verified.

Theorem 4: The punctured code of an code
is an code.

Remark 10: The code
is an code whose

codewords are contained in . Since is an -dimen-
sional subspace it follows that there is an isomorphism such
that . The code is an

code. The code was obtained from
by such isomorphism which uses the -coordinate puncturing
on all the vectors of .

Example 12: Let be the code given in Ex-
ample 10. Let be the seven-dimensional subspace whose

generator matrix is

...
...

. . .
...

...

By using puncturing with and we obtain a
code with minimum distance and size . By adding to

two codewords, the null space and we obtained
a code in . The following tables show the
number of codewords which were obtained from each of the
identifying vectors with weight of Example 10 (see the top of
the following page). The Ferrers diagram rank-metric codes in
some of the entries must be chosen (if we want to construct the
same code by a multilevel construction) in a clever way and not
directly as given in Section III. We omit their description from
lack of space and leave it to the interested reader.

The large difference between the sizes of the codes of Exam-
ples 11 and 12 shows the strength of puncturing when applied
on codes in .
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B. Code Parameters

First we ask, what is the number of codes which can be de-
fined in this way from ? is an -dimensional subspace
of and hence it can be chosen in different ways. There

are distinct way to choose after was
chosen. Thus, we have that usually puncturing of a code in

will result in different punctured codes.

Theorem 5: If is an code then there exists an

code such that .

Proof: As before, can be chosen in different ways.
By using basic enumeration, it is easy to verify that each -di-
mensional subspace of is contained in -di-
mensional subspaces of . Thus, by a simple averaging ar-
gument we have that there exists an -dimensional sub-
space such that .

There are codewords in which are not contained
in . For each such codeword we have

. Therefore, contains vectors which do not
belong to . In there are vectors which do not
belong to . Thus, again by using simple averaging argument
we have that there exist an -dimensional subspace

and such that

Therefore, there exists an code such
that

Clearly, choosing the -dimensional subspace and
the element in a way that will be maximized is important

in this context. Example 12 can be generalized in a very simple
way. We start with a code obtained from
the codeword in the multilevel approach. We apply

puncturing with the -dimensional subspace whose
generator matrix is

...
...

. . .
...

...

It is not difficult to show that in the
rank-metric code there are codewords with zeros in the
last column and codewords with zeros in the first row.
There is also a codeword whose first row ends with a one. If

is this first row which ends with a one there are code-
words whose first row is . We choose to be .

By using puncturing with and we have and
. Hence, is a code in

. By using more codewords from the constant-weight
code in the multilevel approach and adding the null space and

to the code we construct a slightly larger code with the
same parameters.

C. Decoding

We assume that is an code and that all the di-
mensions of the subspaces in have the same parity which
implies that . This assumption makes sense as these
are the interesting codes on which puncturing is applied, sim-
ilarly to puncturing in the Hamming space. We further assume
for simplicity that without loss of generality (w.l.o.g.) if
is the generator matrix of then the first
columns are linearly independent, i.e., , where
is an unity matrix and is a column vector
of length .

Assume that the received word from a codeword of
is an -dimensional subspace of . The first step will be
to find a subspace of on which we can apply the decoding
algorithm of . The result of this decoding will reduced to the

-dimensional subspace and punctured to obtain the
codeword of . We start by generating from an -dimen-
sional subspace of . This is done by appending a
symbol to the end of each vector in by using the generator
matrix of . If a generator matrix is given we can
do this process only to the rows of to obtain the generator
matrix of . We leave to the reader the verification that
the generator matrix of is formed in its reduced row echelon
form.

Remark 11: If the zero of is in coordinate then instead
of appending a symbol to the end of the codeword we insert a
symbol at position .

Let be the dimension of and assume is the parity of
the dimension of any subspace in , where or .
Once we have we distinguish between two cases to form a
new subspace of .
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Case 1: is even.
• If then .
• If then .

Case 2: is odd.
• If then .
• If then .

Now we use the decoding algorithm of the code with the
word . The algorithm will produce as an output a codeword

. Let and be the subspace of obtained
from by deleting the last entry of . We output as the sub-
mitted codeword of . The correctness of the decoding
algorithm is an immediate consequence of the following the-
orem.

Theorem 6: If then .
Proof: Assume that . Let be

the word obtained from by appending a symbol to the end of
each vector in (this can be done by using the generator matrix

of ). If then we append the same symbol
to to obtain the element of and to obtain the element of .
Hence, . If
then . Now, note that if
is odd then does not have the same parity as the dimensions
of the subspaces in and if is even then has the same
parity as the dimensions of the subspaces in . Therefore, if

then by the definition of we have
and hence . Therefore, the decoding algorithm
of will produce as an output the unique codeword such that

, i.e., . is obtained by deleting the
last entry is each vector of ; is obtained by deleting
the last entry is each vector of . Therefore, .

The constant-dimension codes constructed in Section IV have
the same dimension for all codewords. Hence, if was con-
structed by our multilevel construction then its decoding algo-
rithm can be applied on the punctured code .

VI. CONCLUSION AND OPEN PROBLEMS

A multilevel coding approach to construct codes in the Grass-
mannian and the projective space was presented. The method
makes usage of four tools, an appropriate constant-weight code,
the reduced row echelon form of a linear subspace, the Ferrers
diagram related to this echelon form, and rank-metric codes re-
lated to the Ferrers diagram. Some of these tools seem to be im-
portant and interesting in themselves in general and particularly
in the connection of coding in the projective space. The con-
structed codes by our method are usually the best known today
for most parameters. We have also defined the puncturing oper-
ation on codes in the projective space. We applied this operation
to obtain punctured codes from our constant-dimension codes.
These punctured codes are considerably larger than codes con-
structed by any other method. The motivation for considering
these codes came from network coding [21]–[23] and error-cor-
rection in network coding [2], [24], [25]. It is worth mentioning
that the actual dimensions of the error-correcting codes needed
for network coding are much larger than the dimensions given in
our examples. Clearly, our method works also on much higher
dimensions as needed for the real application.

The research on coding in the projective space is only in its
initial steps and many open problems and directions for further
research are given in our references. We focus now only on prob-
lems which are directly related to our current research.

• Is there a specification for the best constant-weight code
which should be taken for our multilevel approach? Our
discussion on the Hamming code and lexicodes is a first
step in this direction.

• Is the upper bound of Theorem 1 attained for all parame-
ters? Our constructions for optimal Ferrers diagram rank-
metric codes suggest that the answer is positive.

• How far are the codes constructed by our method from
optimality? The upper bounds on the sizes of codes in
the Grassmannian and the projective space are still rela-
tively much larger than the sizes of our codes [4], [2], [11].
The construction of cyclic codes in [4] suggests that in-
deed there are codes which are relatively much larger than
our codes. However, we believe that in general the known
upper bounds on the sizes of codes in the projective space
are usually much larger than the actual size of the largest
codes. Indeed, solution for this question will imply new
construction methods for error-correcting codes in the pro-
jective space.
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