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The Structure of Single-Track Gray Codes

Moshe Schwartz and Tuvi Etzioigenior Member, IEEE

Abstract—Single-track Gray codes are cyclic Gray codes with hashing [10], puzzles, such as the Chinese Rings and Tower
codewords of lengthn, such that all the n tracks which cor-  of Hanoi [13], ordering of documents on shelves [19], signal
respond to the n distinct coordinates of the codewords are onqqqing [20], data compression [22], and circuit testing [23].
cyclic shifts of the first track. We investigate the structure of _. .
such binary codes and show that there is no such code with Finally, for an excellent survey on Gray codes the interested
2" codewords whenn is a power of 2. This implies that the reader is referred to [24].
known codes with 2" — 2n codewords, whenn is a power of  The classic example of a Gray code is tledflected Gray

2, are optimal. This result is then generalized to codes over ¢qde [14], [15]. This code is a list of the2® binary n-
GF (p), where p is a prime. A subclass of single-track Gray L . _ . .
codes, called single-track Gray codes withk-spaced heads, is tuples in the foIIOWIng_Way. Fom = 1 the ILSEICODS'StS
also defined. All known systematic constructions for single-track ©Of the words0 and 1. Given the listt" of the 2~ binary
Gray codes result in codes from this subclass. We investigate this (n — 1)-tuples, we generate the list of tR& binary n-tuples
class and show it has a strong connection with two classes ofpy attaching a ZERO as a prefix to every element of the

sequences, the full-order words and the full-order self-dual words. list X in its order, and then attaching a ONE as a prefix
We present an iterative construction for binary single-track Gray ’ o

codes which are asymptotically optimal if an infinite family of (© €Very element of the same list in reversed order. As
asymptotically optimal seed-codes exists. This construction is @&n example, fom = 3 the list of the reflected Gray code is

based on an effective way to generate a large set of distinct 000, 001, 011, 010, 110, 111, 101, 100. One of the properties
necklaces and a merging method for cyclic Gray codes based of the reflected Gray code is that there is a change in the last
on necklaces representatives. coordinate of every other word. We will use this property later.
Index Terms—Cyclic Gray codes, feedback shift-register, linear In this paper we discuss another class of Gray codes,
complexity, necklaces, self-dual sequences, single-track codes. single-track Gray codes. A single-track Gray code is a list
of P distinct binary words of lengtn, such that each two
|. INTRODUCTION consecutive words, including the last and the first, differ in

RAY codes were found by Gray [15] and invoduced E0b 200 P00 T S8 AT 0L S et
by Gilbert [14] as a listing of all the binary-tuples Y, Y Y

in a list such that any two successivetuples in the list column. These codes were defined by Hiltgen, Paterson, and

. . . o Brandestini [16] who also gave their main application. A
differ in exactly one position. Generalization of Gray cod .

. : - . ngth n, period P Gray code can be used to record the
were given during the years. Such generalizations includk solute anaular positions of a rotating wheel by encodin
the arrangements of other combinatorial objects in a su " ﬁ thp q q 9 tricall y d 9
way that any two consecutive elements in the list diff -0., optically) the codewords om concenrically arrange

in some prespecified, usually small way [14], [15]. Othet{]aCkS' I‘(I'hemfmr reading headsh, mo(tjmted dm sazallelhacrr]ossd
generalizations include listing subsets of the binartuples the tracks suffice to recover the codewords. en the heads

in a Gray code manner, in such a way that the list hate nearly aligned with the division between two codewords,

some more prespecified properties. These properties wBRY components which change between those words will be
usually forced by a specific application for the Gray codd) doubt and a spurious position value may result. Such
As an example we have the uniformly balanced Gray coddi!antization errors are minimized by using a Gray code
In certain applications, it is needed that the number of ic0ding, for then exactly one component can be in doubt
changes will be uniformly distributed among the bit position&d the two codewords that could possibly result identify the
Uniformly balanced Gray codes were shown to exist éor POSIONs bord_erlng the d.IVISI.OI‘], re;ultlng in a small angular
which is a power of2 by Wagner and West [25]. Recently,€T0"- When high regolutlon is requweq, the need for a large
Bhat and Savage [2] have shown that such codes exist for #mber of concentric tracks results in encoders with large
n. During the years Gray codes and their generalizations ha¥@ysical dimensions. This poses a problem in the design of
found applications in a variety of areas such as informaticnall-scale or high-speed devices. Single-track Gray codes
storage and retrieval [4], processor allocation in the hypercuygre proposed in [16] as a way of overcoming these problems.
[5], statistics [7], codes for certain memory devices [gfNote, that since all the columns in these codes are cyclic shifts
Manuscript received April 20, 1998; revised May 15, 1999. This work w: of the first one, it follows that the code is also a uniformly
supported bpy the Fund fc’;’r the iDromc;tion of Rese);rch‘ at thé Technion. aﬁalanced Gray code, which qgam can _be described by a single
The authors are with the Computer Science Department, Technion—Isr@@lumn. Not many constructions for single-track Gray codes
lgzmgen g“CKCh”O'Ogyv Haifa 32000, Israel (e-mail: {moosh, etzion} @csare known. All these constructions are given in [9] and [16].
Communicated by T. E. Fuja, Associate Editor at Large. None of the known constructions is known to produce an
Publisher Item Identifier S 0018-9448(99)07312-5. infinite family of optimal codes, where by the word optimal we
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mean that the code has the largest period for a given lengihd thecomplementary cyclic ordesf W as

n. The main goal of this paper is to study the structure of

these codes and to construct codes with pefibds large as 5(W) A in {i| EW=w, i> 1}_
possible. In this context we will say that codes of an infinite -

family are asymptotically optimal if ]
If o(W) = n we say thatW hasfull cyclic order (or full-

. P, order in short), and ifa(W) = 2n we say thatWW is a
lim == =0 (1) full-order self-dual word.

. o . Definition 2: A lengthn period P Gray codeis an ordered
wheren is the code length and, is its period. list of P distinct binary lengthn, words

In Section I, we present the formal definitions for single-
track Gray codes. Then, we discuss the known construction
methods and structure of single-track Gray codes mainly
of those generated by the known construction methods. We
discuss all the main known results in this area. In Sectigch that each two adjacent words differ in exactly one
lll, we present an improvement to one of the known uppépordinate. IfWp_; and W, also satisfy this condition, we
bounds, i.e., we show that single-track Gray codes with worg8y the code igyclic.
of lengthn and period2" do not exist even ifi is a power oR. Definition 3: Let C be an ordered list of lengthn words
This proof establishes as a corollary that Etzion and Paterson
[9] have constructed an infinite family of optimal single-track
Gray codes. In Section IV, we present an iterative construction
for Gray codes of lengttk from specific classes of Gray )
codes of lengths, and &. This class is infinite and the codes ©" €ach0 < ¢ < P we denote the components Bf; as
constructed are asymptotically optimal, given infinite families
of asymptotically optimal seed-codes for the construction. For Wi = [1%07 wp, -, W)
example, if we have infinite families of optimal seed-codes
for length p? and lengthp}, n — oo, then our construction The jth track of C, for 0 < j < n, is defined as
produces an infinite family of optimal codes for length p52,

Wo, Wi, -+, Wp_3

Wo, Wi, -+, Wp_y.

ny, N — Q. tJ(C) = |:w67 w{) ...7w;)_1:|'
Il. THE STRUCTURE OF SINGLE-TRACK GRAY CODES We say thatC has thesingle-track propertyif there exist
In this section we present the formal definitions for singléIjtegers

track Gray codes. Then, we present some basic properties of

such codes and the idea of the main two known methods kos ki -y Ry

to construct such codes. These two methods provide single-

track Gray codes with additional special properties. We furthealled thehead positionswhereko = 0, such thatt;(C) =

investigate these properties. We also outline the results of p&to(C) for each0 < i < n. For each0 < i < n, k; is

work in this area. called theposition of theith head. The first track is called the
Let W =[wo, w1, --,w,_1] be a lengthm word. Thecyclic generating trackof the code.

shift operator B, is defined byEW = [wy, wa, -+, w1, wo] Definition 4: Let C be an ordered list oP lengthn words

and the complementary cyclic shift operataE is defined

similarly by EW = [w, wo, - - -, w,_1, Wo), Whereb is the

binary complement of. Two lengthn words W, W, are

said to beequivalentif there exists an integef such that

E'W, = W», where E' is i consecutive applications dE. We say that” is alengthn, period P single-track Gray code

The equivalence classes under the shift operator are calle§ is a cyclic Gray code an@’ has the single-track property.

necklaces Efficient algorithms for producing necklaces of @& The main goal is now to construct a length period

given length are given in [11], [12], and [21]. A lengte  p gingle-track Gray code, wher® is as large as possible.
word W = [wo,w, -+, wan—1] is calledself-dualif for each  goynds onp are of a special interest and a very straightfor-
¢, 0 <4 <n—1, wny = w;. Finally, for any two positive yard result is the following lemma.

integersa and b, ged (a, b) denotes the greatest common

divisor of ¢ and b. Lemma 1[16, Lemma 2]if C is a lengthn, period P

o ] single-track Gray code, thezn|P and2n < P < 2™,
Definition 1: Let W be a lengthn word. We define the
cyclic order of W as There are only a few constructions for single-track Gray

codes [9], [16]. None of them attains the upper bound forced
by Lemma 1 for infinitely many values of. Each of these
constructions is based on one of the following methods.

Wo, Wi, -+, Wp_y.

o(W) 2 min {i| EW=W,i> 1}
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Theorem 1 [9, Theorem 4]Let Sp, Si, -+, S-—1 be » This comparison is important as all the known codes are
lengthn binary pairwise nonequivalent full-order words, suclbtained from these two constructions and no code which is
that for each) < ¢ < r—1, 5;, andS;1, differ in exactly one not obtained by these construction or a variant of Theorem 2,
coordinate, and there also exists an inteyeged (I, n) = 1, which will be mentioned later in this section, is known.
such thatS,._; andE'S,, differ in exactly one coordinate, then The second construction of [9] which is a generalization
the following words form a length, periodnr single-track of the first one in a certain sense produces a length

Gray code periodrs(2" — s)*~1(k + 1)n single-track Gray code, where
So, S, e Sy, n+1<s <271 from a code of lengtm and periodrn.
E'S,, E's, .. E'S._,, This code is far from being optimal in any sense. In Section
IV, we improve this result for most cases, by producing better

_ codes for similar parameter lengths.

: : The third construction of [9] is based on Theorem 2 and
EC—Vig, EUig ... E0YIG generates an infinite family of asymptotically optimal codes.
These codes have length= 2™, m > 3, and period®2™ — 2n.

E?S,, E%s,, . E%S, .,

Theorem 2 [9, Theorem 15]Let Sy, S1, -+, S,.—1 be r . . . . )
- . As we will see in the next section, this construction actually

length 2n self-dual full-order pairwise nonequivalent words., . : ; .
For eachi, 1 <i < r— 1, let §; = [0, st, - -, s2*~}] and produces optimal codes since the upper bound given in Lemma
let == ' ¢ vroer e 1 on the period of length, period P single-track Gray code,

for n which is a power of2, can be improved. A similar

Fig, = [3;7 s{*l, el s{*"‘l} construction can be given fat’s which are not powers of

2. Unfortunately, we need some seed-codes with some given

where superscripts are taken modalo. properties to obtain better codes for other parameters, and these

If for each0 <4 < r—1, S; andS;1, differ in exactly two seed-codes have not been found yet.
coordinates, and there also exists an intégged (I, 2n) = 1,
such thatS,._; and E'S, differ in exactly two coordinates, then
the following words form a length, period2n+ single-track

Definition 5: Let C be a lengthn, period P single-track
Gray code, and let the head positions kg k1, - -, k1.
We say thatC' has k-spaced head#

Gray code:
}70507 }70517 . FOST_l, kipi =k +k (modP)
F'S,, FlS, .. F'S, 4, for each0 < i < n — 2.
F2LS,, F25,, s S, It is important to note that all the constructions for single-
: : track Gray codes known today produce codes which are either
Fer-ig, 'F(Qn—l)zsh L penig with k-spaced heads or with a self-dual generating track which

can produce a single-track Gray code witlspaced heads, as
Now, in order to construct a single-track Gray code we wamiill be proved later in this section. As a first step we want

to order as many as possible full-order words of lengtlor to show that allk-spaced heads single-track Gray codes are
full-order self-dual words of lengtPn in a way which satisfies generated by the construction method of either Theorems 1
either Theorems 1 or 2, respectively. Hiltgen, Paterson, aod 2.
Brandestini [16] suggested a method for ordering lemgthll- _ ) .
order words in a way which satisfies the conditions of TheoremDef'n't'on 6: Let O be a set of words. Theychg orderand
1. Their result is summarized in the following theorem. complementary cyclic ordesf the codeC’ are defined as

A .
Theorem 3 [16, Theorem 3]If n > 4, then there exists a o(C) = minfo(W)| W € C}

length », period nt single-track Gray code for each evén o(C) 2 min{s(W)| W € C}.
which satisfies Theorem 4: Let C be a length:, period P single-track Gra
2<t< 2 [Vt ' g P J Y

code with k-spaced heads.

Etzion and Paterson [9] supplied three iterative construc-* T # IS even then

tions. The first construction produces a special arrangement of — ged (k, P) = P/(o(C)).

2"~y pairwise nonequivalent full-order words of lengh, — o(W) = o(C) = n for eachW € C.

which satisfies the conditions of Theorem 1 from a special ~ _ There exists an ordering oP/(o(C)) length n
arrangement of full-order words of lengthn which satisfies necklace representatives of cyclic order which
the same conditions. If is prime and such arrangement of satisfies the requirements of Theorem 1.

the £=2 pairwise nonequivalent full-order words is known,

then the construction produces a len@h period22r — 2r+!
single-track Gray code. This is an optimal code based on

e If k is odd then
— ged (k, P) = P/(5(C)).

Theorem 1, but by using Theorem 2 it might be possible ~— o(W) =2o(C) = 2n for eachW € C.
to obtain a lengtl2p period 227 — 4 single-track Gray code. — There exists an ordering ét/(c(C)) length2n self-
Such a code may exist since there are exactly four words of dual necklace representatives of full cyclic or@er

length2p which are lying in nonfull-order self-dual necklaces. which satisfies the requirements of Theorem 2.
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Proof: Without loss of generality (w.l.o.g.) we assumdor each0O < ¢ < P. Sincea(C) is even, it follows that is
thatky = 0. Let C be a lengthn, period P single-track Gray odd and, therefore,

code withk-spaced heads. Let= [sg, s1, -, sp—1] be the
generating track of”. The ith word, W;, of C has the form Wiy pjo = E0O2W, = E*OW, =W,

Wi = Isis it Sidan, 5 Sit(n—1)i] and the generating track is self-dual. O
and hence

When the generating track of a single-track Gray code is
Witn = [sith, Sik2k o Sit(n—1)ks Si-bnk]- self-dual, many other single-track Gray codes can be generated
by selecting any subset of the columns and complementing
them. These new single-track Gray codes do not necessarily
have k-spaced heads. These are the only known single-track
Gray codes which cannot be constructed directly by the use
of either Theorems 1 or 2. However, they are, of course,
constructed by a straightforward variant of Theorem 2. More-
over, as an immediate consequence from Theorem 4 we can
conclude that there is no similar arrangements as in Theorems
 po(C) B 1 and 2 of feedback shift-register sequences of ondér is a
Wintocyp = E77 W = W, very interesting problem to construct single-track Gray codes
and which do not havek-spaced heads and are not constructed
Wt i = E'W,, W, by this variant of Theorem 2. Note, thatsf is odd then by
complementing every other column of the code generated by
for each0 < j < o(C). Since each word appears at mostheorem 2 we obtain a code which can be constructed via
once in the code, it follows that(C)k = 0(mod P) and Theorem 1.
henceE*W = W for eachW € C, and E'W # W for
each0 < i < o(C), which means thab(W) = o(C) and,
therefore,ged (k, P) - o(C) = P. [1l. N ONEXISTENCE RESULT
It is well known thato(C) divides n, and if o(C) < n, Let C be a single-track Gray code of lengthand period
then the weight of all the words is divisible by/o(C) > 1. P. By Lemma 1, there is a theoretical possibility tdat= 27,
Therefore, no two words differ in exactly one coordinatebut then, necessarilyp is a power of2. The only known
Thus o(C) = n. code with these parameters is the lengtiperiod 4 single-
It is obvious that the list¥y, W1, ---, Wp/,(cy—1 forms track Gray code. In this section we show that there is no
a Gray code, and singged (k, P) = P/o(C), it follows that other code with such parameters. The proof will consider
all the words in it are pairwise nonequivalent. Moreover, thetee track as a sequence of leng?i and investigate the
existsl; such thatWp,,cy = E"“'W,. Therefore, there exists polynomial of minimal degree which generates this sequence.

We now distinguish between two cases.

Case 1: %k is even. SinceC is a Gray code, it follows
that the parity of W, and W,,, is the same, and hence
$; = Siank and Wi, = EW,. Therefore, for eacly;, jo,
which satisfyj; = j2(mod ged (k, P)) there exists ar such
that E'W;, = W,,. Now, let W,, be a word inC' for which
o(W,,) = o(C). SinceW, ;. = E'W,, it follows that

Iy such thatl k = [, P + P/o(C) which implies In the literature, the degree of this polynomial is often called
the linear complexity of the sequence. Hence, we first present
o(C)k =l o(C) = 1. the necessary definitions for this discussion.
P Definition 7: Let S = [so, 51, -+, 1] be a lengthr

Sinceo(C)k/ P is an integer, it follows thaged (o(C),l1)=1. sequence, and let
Thus the listVy, W1, - -+, Wp/,cy—1 satisfies all the require-
ments of Theorem 1. At ‘

Case 2: k is odd. The parity ofW; is different from the S(x) = Z 5ix"
parity of W, 4, and hences; = 5, %. The rest of the proof i=0
is similar to the one of Case 1, where we uxe) and E
instead ofo(-) and E, respectively. O be apolynomial. We say thg(x) is theassociated polynomial

) ) of S, and S is the associated wordf S(z).
Single-track Gray codes wittk-spaced heads have some

additional properties as the one given in the following lemma. Definition 8: Let 5 be a lengthr sequence over Gfg).
_ _ ) The linear complexityof S is defined as
Lemma 2: If C is a lengthn, period P single-track Gray

code withk-spaced headsg; odd, then the generating track of A

the code is solfdual generating o) 2 minfdes f(2)] () £0, f(z) - $(x) =0
Proof: Let C be a lengthn, period P single-track Gray (modz” —1)}.

code with k-spaced headg; odd, ands its generating track.

From the proof of Theorem 4 there exists an intefefor The linear complexity as defined here is the same as the
which ged (1, 5(C)) = 1, such that degree of the minimal degree linear recursion which generates

- the sequence. This is the more common definition as given
Wiirac) = E'W; in [18].
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Lemma 3: Let S be a length- = p"* sequence over Gfg), If we assume that is not a full-order word, then
where g = p'2, p prime. The linear complexity of is c if _ i 1
and only if {ki}iZo ={2" " +ki},_,
( — 1)°L5(x) and theith word and the(i + 2"~1)th word contain exactly

the same components of the generating trackhe all-zero
word appears somewhere in the list, and hence it will appear
at least twice, which is a contradiction. Thiuss of full-order
and, thereforeg; > 2»—1 — 1.

Lemma 4 [3, Theorem 2]Let S be a lengttn = 2™ binary  Self-dual sequences of lengt have weight2"~! and
sequences is self-dual if and only ife(S) = 2 + 1. sinceh has weightn, it follows that /4 is not self-dual when

We will prove now a result which is stronger than theé Zif‘”d hence by Lemma 4 the linear complexity/ofs
nonexistence result that we actually want to prove. not 2% + 1. Therefore,

=dl+az+z"+--+2" 1 (modz"—1) (2)

for somed # 0.

Theorem 5: There is no ordering of all the” words of 6, > 2"t (8)
lengthn = 2™, m > 2, in a list which satisfies all the

following requirements. Summing (7) and (8) we get that

1) Each two adjacent words have different parity. 01 +6:>2"—1

2) The list has the single-track property. ) o ) _

3) Each word appears exactly once. in contradiction to (6). Thus no such single-track code with
track s exists. O

Proof: Let us assume the contrary, i.e., letbe the
track of a single-track code in which eaefhtuple appears Corollary 1: There are no single-track Gray codes of length
exactly once and each two adjacent words have different> 3 and period2”.
parity. Let s(x) be the associated polynomial ef and 6,
the largest integer for which there exists a polynomigl:)
which satisfies

As mentioned in Section Il, Etzion and Paterson [9] have
constructed single-track Gray codes of length= 2™ and

period 2" — 2n.
— 64 2"
s(@) = (z+1)"pi(z) (modz™ +1). (3)  cCorollary 2: The single-track Gray codes of length= 2
Let kg, k1, ---, k,_1 be the locations of the heads in the Iisf’j‘nd periodz" — 2n are optimal.
- The nonexistence theorem can be generalized in a very
h(z) A Z L interesting way to single-track Gray codes over(@F; where
— p is a prime. We discuss nonbinary codes and present this

generalization of the nonexistence theorem in Appendix A.
the head locatorpolynomial of the list, and: the associated
length2™ word of h(x). Let 65 be the largest integer for which
there exists a polynomials(x) which satisfies

IV. AN ITERATIVE CONSTRUCTION

In this section we describe an iterative construction which
h(z) = (z 4+ 1)%po(z) (modz® +1). (4) generates long-period single-track Gray codes. We are given
two pairs of disjoint Gray codes, of lengths and %, of

Sincez?” +1 = (z+1)*" over GR(2), it follows that0 < 61, pairwise nonequivalent full-order words. Each pair satisfies a
2 < 2" — 1. Since each two adjacent words have differerfet of properties needed for the construction. The construction
parity it follows that itself is made of five stages. The first stage is an iterative
generation of a large number of pairwise nonequivalent, full-
(@ +Dh(x)s(z) . i order words. The second is ordering of the necklaces into many
=l+z+2°+--+2> ' (modz® +1). (5) Gray codes. The third stage consists of merging these Gray
codes into two sets of Gray codes. In the fourth stage, the
Gray codes of each set are concatenated into two cyclic Gray
(mod 22+ 1) codes which satisfy the properties needed for the construction.
The last stage is a simple merging of these two Gray codes

it follows from (2)—(5) that into one Gray code.

Since(z + 1) = 22" +1 and

@+ =1tz 2t

61+ 6y =2" — 2, (6) A. Nonequivalent Necklaces Generation

Equations (2)—(5) also imply tha# + 2 is the linear com-  The first step in generating a long single-track Gray code
plexity of k, and 6, + 2 is the linear complexity of. Since based on necklaces, is to generate a large set of pairwise

each word appears in the list exactly once, it follows that nonequivalent full-order words, known also as Lyndon words
must be of full cyclic order, and hence [1]. This construction should generate the necklaces in such

a way that it will be easy to order them into a Gray code.
6y > 2771 — 1. (7) The construction of these pairwise nonequivalent words will
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be iterative, i.e., given two sets of pairwise nonequivalent full- Construction 1 produces iteratively a large set of pairwise
order words of lengtl and lengtht, respectively, we generatenonequivalent, full-order words. This set is generated in a way
a set of pairwise nonequivalent full-order words of length  which makes it relatively easy to order its necklaces in a cyclic
We first partition the set of all binary:-tuples into two sets, Gray code, provided that the elementsidf, AL, N[O, AJL
those ending in a ZERO and those ending in a ONE, i.e., foan be ordered as cyclic Gray codes.

eachb € {0, 1}, we define

A B. Generation and Merging of Gray Codes
Xrl:l = {[-T()v L1, " 7y Tm—2, -Trn—l] S {07 1}rn| Lm—1 = b} . .
' S ' Given a Gray code of length, we will generate many

Gray codes of the same period and length for which all
words belong to distinct necklaces. Those Gray codes will be
N2 (Sh st . 8k hcal then merged into two sets of Gray codes. The generation of
A A {S’b G L g } c xb one such sho_rt Gray code and the me_rging of some of these

; 07 %1y " P -1 =Tk Gray codes will be based on the following two trivial lemmas
be sets of pairwise nonequivalent, full-order words, such thathose proofs are omitted.

Construction 1: For eachb € {0, 1}, let

n—1

) Lemma 5: If the words Sy, S1, -+, S,.—1 € {0, 1} form
0 @ 1 ) ) s M )
N ﬂ U {E S|s5e Nn} a cyclic Gray code, then the following words form a cyclic
=0 - Gray code:
— A0 EiS'| 8§ e N1 = ¢, k—2
* ﬂZL_,JO{ | b Xo, X1, -+, Xpoa, So+ Y Xi
=0

From these sets we generate the following set:

h—2
h—2
Nk 2 { Xo, X1, -+, Xp—2, S—i-z X; [XO’ Xis X, 52 +2Xi]
i=0 —
[b07 b17 MY bk*l] c NIQO U ]il, XZ c X,r?.’

’ k—2
k-t X07 X17 T, Xk—27 S’I’—l + XZ
0§i<k—1,S€Nf,p:Zbi}. [ ;
=0 where X; € {0, 1}" for each0 < i < k — 1.
Theorem 6: The setV,, , of Construction 1 contains pair-
wise nonequivalent full-order words of lengkh.
Proof: Let

Lemma 6: Let X; € {0, 1}™ for each0 <! < k—1 and
for somej, 0 < j < k-1, let X; € {0, 1}" be a word
such thatX’; differs from X; in exactly thedth coordinate.
Y = [yo, v1, ***» Yhn—1] Furthermore, the necklacés, Sy, -+, S,—1 € {0, 1}™ form
and a cyclic Gray code in which, for somg S; and S;,; differ
in the dth coordinate. Then, the necklaces shown at the top of
the following page form a cyclic Gray code in which the last

be two words in the defined set), .. Let us assume that and first pair of necklaces differ in th@ + jn)th coordinate.
EY = Z for some0 < ¢ < kn. Now

Z it [ZOa Zla T, an—l]

kol C. A Set of Properties for the Codes
> ETEY =([E°S,,, E°Sp,, -+, E°Sp,] L _
= In order to make an iterative construction of Gray codes

1 based on pairwise nonequivalent full-order words we need our
Z E"Z =[Sm., Somus s S Gray codes to satisfy certain additional properties. One of the
‘ e ey e important properties concerns the positions in which adjacent

words in the code differ.
where S,,, € Nt andS,,, € N2, ay, az € {0, 1}.

For a; # a2, Sm, and S,,, are nonequivalent, and hence Definition 9: Let W,, W, be words of length which differ
ay = ay. Formy # ma, S,,, ands,,, are nonequivalent, and, only in the ith coordinate. We define
therefore,m; = mo, which impliessS,,,, = E°S,,,.

A .
S, is a full-order word, and hence|c. This implies, that A(Wr, Wa) =
if we look at We are now in a position to state the set of properties
St =Wty Yon—1, " s Ykn—1] required for some Gray codes based on distinct necklaces in
o ,1 _y ; R order to obtain the iterative construction. Let
m), “n—1, #2n—1, y “kn—1 NT? 2507 517 o 510’071
thenE/™S’ , = 5’ ,. As before,5’ , andS’ , are nonequiv- Ny =80, 81, -+, Sk 4
alent full-order words, and henclte|c/n or knlc. There- NP =80 8t ..., 5%71

fore, Y.: Z and thus all the words inV,, ; are pairwise n_gn gl . g
nonequivalent. O k=200 910 7 P
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[(Xo, X1, -+, Xjy ooy X2, Si + Xo+ Xy + -+ Xj + -+ X 0]
[(Xoy Xuy ooy Xyooe, Xgo, Sipn + Xo+ X+ + X+ + X2

J
[X07 le 7XJ/7 "'7Xk—27 S1—1+X0+X1++X;++Xk—2]
[X07 X17"'7X§7 "'7Xk—27 SO+XO+X1+"'+X§+"'+Xk—2]

[Xo, Xy, ooy Xy oo, Xpp, Si+ Xo+ Xy + -+ X+ o+ X

[(Xo, Xp, oo, Xy oo, Xz, Sipn + Xo+ Xy + -+ X 4o+ Ko

be cyclic Gray codes such the following properties are satis-and k, respectively. We partition the necklaces generated

fied. by Construction 1 into disjoint Gray codes, where each Gray
(p.1) The sets of necklaces which belongh@, A1, A70, code corresponds to a necklaBe= [bo, by, -+, bx—1] € N}
N}, respectively, satisfy the conditions of Constructh = b, ). Let p 2 Zf;ol b; be the parity ofB. For any
tion 1. choice of W; € &%, for each0 < i < k — 1, we use Lemma
(p.2) 5 to construct a cyclic Gray code with the words

The words[0"~'1], [0"~211] are adjacent inV;..

k—2
© [0"] e ML Wo, Wi, -, Wiea, SE+ 3 Wi (0<j <)
(p-3) i=0
*  There existig, i1 such thats, and Sj, ,, differ  thjs code is of lengtttn and period-, and will be denoted by
|n exactly the last coordinate, and al§(§ and
S} ., differ in exactly the last coordinate. We say C(B, [Wo, Wy, -+, Wi_2]).

thati, andi, are thebridging indicesof N and : : o
N, respectively, and thaﬁo 570 o 51,5711+1 By Theorem 6, all the words in this code are pairwise

are thebridging wordsof the|r respective codes. nonequwalgnt, full-order v_vords. . :

«  There existi}, 7, such thatS"l and 59, | differ For t.he givenB we continue and me_rgeilll its cyclic Gray
ot codes into one Gray code. There af&—1*~1) Gray codes

in exactly the last coordlnate and a|§{?0 and which are related td3 and we want to order them in such a
S 41 differ in exactly the last coordinate. We sayyay that it will be simple to merge them in the given order.
thatL0 ands} are thebridging indicesof A}° and The merging will be performed as done in Lemma 6. To apply
N, respectively, and tha?, S, Si, S;1+1 this lemma we need two Gray codes
are thebridging wordsof thelr respectlve codes.

+ Let j be the index for which{S}, S1,,} = )
{[0"—11], [0"=211]}, and leti, and i, be the C(B, [Wo, Wi, -, Wi, -, W)
bridge indices ofV? and A/}, respectively, then

C(B7 [W07 le A ij A Wk—Q])

such thatW; and W; differ in exactly one coordinate. This
{A(S?, SPy)|0<T<ro, I#i0} coordinate is not the last one since the last coordinate is
_ [ (n—1)(k=1)
—{A(S) st 0<Il<rm l=ii 47 predetermined byB. Thus we should order th2
{ ( br7itl | <ru I, 7&‘1} sequences of the form
={0,1,2,---,n— 2}
., ., : L 0 Wo, Wi, -+, Wiz
* Let¢; and:] be the bridge indices oV}’ and

N7, respectively, then in such a way that any two differ in exactly one coordinate.
This is a Gray code ordering and most (and usually all

(A(S, $i%) [ 01 < 1£ 4} y ing (and usually all
Gray codes are good for this purpose. But, for simplicity of

={a(s/, l+1 Jo<i<ry, L#£4} construction we will choose the reflected Gray code, which

={0,1,2, -, k—2}. was introduced in Section |, and in the appropriate positions

we will plug in the predetermined values &. We call this
code, themerging Gray codend we require another property
from the merging Gray code (and this property can be removed
if we request some more properties from the four Gray codes
of length » and &, which can be easily obtained). As said
We are given the four cyclic Gray coda&?, A}, A%, AJ' in the Introduction, half of the changes in a reflected Gray
based on pairwise nonequivalent full-order words of periatbde are in one specified coordinate (usually the last one). We

For k = n, we say thatV? and /\/,% satisfy property(p.i),
1 <1i<4,if N2, NE, MO, N, satisfy (p.i).

D. Generation of Short Gray Codes
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require that this coordinate will not be congruent modultm Lemma 7: For eachB = [bo, by, - - -, bp_1] € N{° U N2,

A(SE, SE 1), or A(SD, SP 1), orn — 2. This can be done p2 E;:& b;, the codeC(B) = Yy, Y1, - -+, Yp_, is a cyclic
easily by an appropriate permutation on the code coordinategay code of lengttkn and periodP = 2(k=1(n=1). which
After this is done in the generated merging Gray code no tw@tisfies
consecutive changes are in a coordinate congruem(lﬁ’%, X
St ), or A(S?, SO 1), orn —2, modulon. Our Gray code : :
i1+1/1 i “io+1/ ' A(Y;,Y; 0<e< P=1{0,1---kn—1 ni—1}.
of lengthn(k — 1) and period2™~V*—1 will be denoted by (A +1) F=A }\i:UI{ )
Proof: It is obvious thatC(B) is of lengthkn, and since
we merged2*~V(~1) codes of period,, it follows that the
- period of the resulting code i&® = 2=V —Ly By Lem-
We note that inX ma 6, the resulting code is a cyclic Gray code. Finally, since

B A B
X7 = X07 X17 ) X2(n—1)(}c—l)_1-

Q= D(k—1) _q
=0

o(n—1)(k—1)

(A(XP XE )} {Aa(X?, X500 o

k—1 k—1
={0, 1, 2,~~~,n(k—1)—1}\U{ni—1}. ={0, 1, 2,~~~,n(k—1)—1}\U{m’—1},

We are now in a position to merge all the Gray code'tsfOIIOWS by Lemma 6, andp.4) that

which are related ta3. During this merging we make sure{A(Y;, Y;41)| 0 <4 < P}

that each two adjacent words of lengtft constructed from k
either bridging words or the wordg™~11] and[0™~211] will ={0,1-, kn—1\|J{ni—1}. O
remain adjacent. The merging starts with the c6¢8, X7) i=1

and the cod€(B, X). SinceX® and X differ in exactly

one coordinate, say, théth coordinate(0 < d < (k — 1)n, E. Concatenation of the Short Gray Codes

d #n —1 (modn)) then it is possible to merge the latter Now we have a set of}, + | cyclic Gray codes, each
into the former usingp.4) and Lemma 6. The resulting codecorresponds to a different member 8f° [JA}!. Recall that
will be called themain code In a typical step of the merging the bridging indices ofV?, A}, Ni°, Ni* areiq, i1, if, i,

we have a main code obtained by merging the following Gragspectively. Le¥y, Vi, -+, Vi_o € {0, 1}*~* bek—1 words
codes: of lengthn — 1 chosen arbitrarily. For each
C(BvXOB) B:[b()vblv"'vbk—l]e-/\/']ioUN]ZI
B
C(B7-X1 ) and
: k—1
1=0
and we merge to it the Gray codéB, Xf,). Let we defineZ; = [V;, b;] for each0 < i < k — 1. We cyclically
shift the rows of the cyclic Gray cod€(B), in such a way
d 2 A(XP,, XP) that the first word will be

k—2

Z07 Z17 Tt Zk727 S£;+1 + Z Zz
=0

do 2 A(XP, XE)).

AP was chosen in a way that if; = d; (mod n) thend, % )
A(SL, 8L 1) dy # A(S?, 52 1), anddy # n — 2 (mod n). and the last word will, therefore, be

207 ~Mig+1

Hence, in this case and also whén# ds (mod n), by (p.4) k—2
and Lemma 6 there is a pair of adjacent word€{®, X7), Zo, Z1, -+, Ly_a, Sg’; + Z Zil.
originated from a pair of adjacent words A, which are not i=0

the bridging words or the words™ 1], [0n72,11]' Therefore,  \yg |00k at the following two concatenations of our cyclic
C(B, XﬁH) can be merged by Lemma 6. This merging Procegsray codes:
ends when all the Gray codes o o o o o

Nk :C(Si6+l)7 C(Sirt2)s o+ C(Sréfl)vc(so )

%o

c(B, X L C(8)
C(B, XB) 0
. ! Nr%k :C(Sz{i-pl)v C(S§i+2), T C(Sﬁ_l),C(Sél),
-, C(S).

C(B, XQan—l)(k—l)_l)
In the rest of this subsection and in the next subsection we
are merged together. The resulting code is calleR). will prove that A° and A! is a pair of cyclic Gray codes of
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pairwise nonequivalent full-order words, which satisfies prop- Lemma 10: The wordg0™*~11] and[0"*~211] are adjacent
erties (p.1)(p.4) and thus can be used for further iteration;n N2, .
of the construction. Proof: By (p.2) we have thaf0*~11] € A7t and[0"~11]
and [0"~211] are adjacent inA}. Therefore, the words
[0"*~11] and[0"*211] are adjacent i([0* 1], [0%—1)7]).
Since during the merging process we did not separate these
2n=Dk=1=1 0 4 Yol and 2 DED1 (0 4y ) words, it follows that they are also adjacent(f{0*~*1]). To
complete the proof we have to show that these two words were
respectively. Furthermorely, and A, contain pairwise not separated during the concatenation. This is an immediate
nonequivalent full-order words. consequence from the fact tHat—*1] is not a bridging word
Proof: All the necklaces of\, andA;;, were produced since[07] is not a full-order word. O
as in Construction 1 and hence, by Theorem 6, all the words

are pairwise nonequivalent full-order and of length. Lemma 11: A, Ny, satisfy (p.3).
For a given Proof: Observe that the last word of},, which is also

the last word ofC(S;i)

Lemma 8: V0, and A}, are cyclic Gray codes of length
kn and period

B = [bO?bla o 'abk—l]

k—2
and Zo, Zys vy Zi—2, S+ Z Z;
=0
[/V07[/V17...’I/Vj’...7I/Vk727
earl wherep is the parity ofS“L The first word ofA/?,, which is
clearly also the first word oC(S’9+1) is
C(Bv[W07W17"'7Wj7"'7Wk—2]) b2
has period-,, wherep is the parity ofB. C(B) was constructed Zo, Ly, vy Lg—2 SZH +Y 7
by merging2(*~D®*—1) Gray codes of the form i=0
C(B,[Wo, Wy, W;, -+, Wi_s]) where clearlyp is the parity ofS’0 SlnceSp and Sf 41

. S differ in exactly the last coordmate it follows that these two
and hence its period ig"~"*~,. Since 5} and S£1+1 words differ exactly in the last coordinate. Similarly, the first
have different parity, it follows thaﬂ(sll) and C(S731)  word of A%, and the last word a0, differ in exactly the last
together have(™=D*=(r, 4 r,) necklaces, and\/bk has coordinate. Therefore, these four words can serve as bridging
2(n=1)(=1)=1(ps 4 7)) words. To complete the proof wewords of V', and N2, O
have to show that?’, is a cyclic Gray code. As said before

. [ *b *b *b Sk
the last word |nc(5(b) ; Lemma 12:Let N}, = S3°, S1°, .-+, S _1, 4* be the

index such that

{574,875} = {0y, ot 1)y

J—2
Zo, Zy, 0y Zie2, P +> %

=0

andij; andi} be the bridging indices aV?, and N}, res-
wherep is the parity ofS}’, and the first word inV(S7,) is  pectively. Then
{A(S, sgh)| o<l <, T#45)
:{A(Sl l+1)|0<l<7ivl7élel7éJ}
={0,1,2, -, nk—2}.

Z(/)a Z{a"'aZI/c—QaSp +ZZ7/ .

T541

Clearly, these two words differ in exactly one coordinate. If

5% and S¥, , differ in the dth coordinate0 < d < k — 1, Proof: If B € A%, then by Lemma 7

then for eachd < j <k —1,j #d, Z; = Z}, andZ; and

Z!, differ in the last coordinate. Since I{p.3) SP and 7 41 (A, Yip)[ 0 i< P}

dlffer in exactly the last coordinate, it follows that the last L

word of C(S}?) and the first word oE(5%,, ) differ in exactly =10, 1+, kn— 1)\ U {in — 1}

the (n(d + 1) — 1)th coordinate. ThusV?, is a cyclic Gray =t

code of lengttnk and period2(* =1 *=1=1(rs 4 )rr. O whereC(B) = Yy, Y1, -+, Yp_1. By the proof of Lemma 8
we obtain the changes in all positions which are congruent to

F. Properties of the Generated Gray Codes n — 1 modulon in the concatenation of the short Gray codes,

10
In this section we will prove that the generated Gray cod@gd thus by taking into considerati¢p.3) for A;” and

0 and AL, satisfy (p.1)<(p.4) and, therefore, can be useoand trrl]e fact thathone change |3 a coordn;ate implies at least
for further iterations of the construction. The first lemma is a'i){vo changes in the same coordinate we have
immediate consequence of Lemma 8. {A(SH, S| 0<I<ry, T#£i0, 1#j }

Lemma 9: N9, and M}, satisfy (p.1). =10,1,2,---,nk—2}. O
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In Lemmas 9-12, we have proved that the pair of cod&ghen P* = 2°* — ¢, we have that
N9, N1, satisfy propertiegp.1)<(p.4). Thus we can use this X X
nk' Y Vnk __ onk —k -n _ —(n+k)
pair of codes for another iteration of the construction. Cnke = 2" (277 + a2 CrCn?2 )-

Under assumption (9), we get, again, that
G. Optimality of the Code
Lemma 13: Concatenating the two codes given by the n koo 27K

construction . .
which means that the family of codes generated by any number

Core 2 N2 N of iterations of the construction is still asymptotically optimal.

o . Of course, as said before, one needs an infinite family of
produces a Gray code of pairwise nonequivalent, full-ord btimal seed-codes to make the resulting sequence of codes
words of lengthek and period2®— D D=1 (4 ) (rh +74) b y Seq

which satisfies the conditions of Theorem 1 also optimal. If we start with “good” codes which are not
Proof: By Lemmas 8 and 110, is a cyclic Gray code optimal we obtain codes which are usually better than the best

of pairwise nonequivalent full-order words of the require(|'§nOWn codes.
parameters. In addition, by Lemma 10, the wofes*—11],
[0"*—211] are adjacent in the code. The code can be cyc
cally shifted so they become the first and last words. SinceAs mentioned before, seed-codes for our construction exist
[Onk—211] andE[()"k—ll] differ in exactly one coordinate, theonly for lengthn > 9. This fact limits the list of lengths
conditions of Theorem 1 are satisfied. O for which we can obtain good single-track Gray codes by our

construction. We can overcome this limitation by weakening

T_he code of Lemma 13 can be used in The_orem 1to prOdl{ﬁ% requirements induced by the propertips}(p.4). Let
a single-track Gray code of lengt¥% and period

2(k—1)(n—1)—1(7>0 +7r1)(ry + 7)nk. 1

h| Generalization

In order to use the construction, we need seed-codes which 1 gl Gl
satisfy propertiegp.1)~(p.4). Such seed-codes may exist only K o
for n > 9. A simple computer search has found such seelde cyclic Gray codes, such that the following properties hold.

codes, which contain all full-period words, for lengdh13. (9.1) The sets of sequences which belongv{®, A} satisfy

The seed-codes fon = 9,10, and 11, are presented in the conditions of Construction 1, anlf;] contains

Appendix B. pairwise nonequivalent, full-order words.
Example 1: Let n = k = p be a prime for whichg+7; = @2)

n—1 n—2 i i 1
(27 — 2)/p. We conjecture that this assumption holds for all Bﬁ‘ilviordsj[?/, 1], [0"*11] are adjacent i\,
primes greater thaf and we know it holds fop = 11 and [ I €M
p = 13. We obtain a code of length? and period (9.3) There existio, ¢, such thatS} and s . differ in

g(p—l)(p—l)—l(zp _9)(2p —2)p? = 2pz_2p+2(2p_1 12, exactly the last coordinate, and_ al§<§0 and S}lﬂ
differ in exactly the last coordinate. We say that

Applying the construction iteratively we obtain a code of io and; are thebridging indicesof A and A},
lengthp? and period2?’ —#r+i(2r—1 — 1), The ratio between respectively, and thas? , S? |, S7, S}, are the
the period and the total number of words of lengthis bridging wordsof their respective codes.

(2p—1 — 1/2p— 1Y, (q.4) Let j be the index for which

If we assume that

rot+ri=(2% —cn)/n

{85, S} = {l0"~ 1, [o"*11]}

and letip andi; be the bridging indices aV;? and
. . N2, respectively, then

ro +77 = (2% — ) /k
. ot = k)f/h {A(S?, 1) |0 <U<rg, I#d0}
then, by Lemma 13, one iteration of the construction gives a — fA(SE St 0<l<prilti l47
single-track Gray code of lengthk and period {A(SE S| 0 E<m, T4, 147

and

={0,1,2 -, n—2}

* nk L —k _ —n ) *(""'k)) i ) . . . .
P =2 (1 cx2 n2 "+ cxcn2 ) Unlike our first construction, this one is not symmetric

If we further assume that relative to the parametersandk of the seed-codes. Therefore,
cn o we say thatV)!, N} are themultiplied codesand V], is the
lim — =0 lim — =0 9 ltipli de Th i itself i imil
el on oo K multiplier code The construction process itself is very similar
N . to our first construction. We start by constructing for each
iheemn;12e fenod’? asymptotically reaches the upper bound Og € N}, the codeC(B). As before, we concatenate the codes
to get the main code
lim P*=2°F, N ) ) ) )
my koo nk — C(SO)’ C(Sl)’ C(SQ)’ ) C(Sr’—l)'
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This code contains pairwise nonequivalent full-order words of Theorem 7: Except forp = 2 andm = 1, there is no

lengthnk and satisfies all the properties of a multiplier codeardering of all thep™ words of lengthn = p™ over GHp),

Using Theorem 1 we can obtain a length, period wherem > 1 andyp is a prime, in a list which satisfies all the
following requirements.

1) There exists a nonzero constaht GF(p), such that

inal KG q heh k-2 th h | for any two consecutive words in the liBt; and W,
single-track Gray code, wl > 3. = 2 then the only we haved,,(Wiys, Wi) =d, 0 < i < p" — 1.

word of length2 used ig[01] and we use only; . In this case, 2) The list has the single-track property
the construction coincides with the first construction of [9] and 3) Each word appears exactly once '

we obtain a lengtt2n, period2”r;n single-track Gray code. Proof- Let th X ie. that h d
Unlike our first construction, this construction has multiplier . fool: Let us assume the contrary, 1.€., that such a code

i for | S h ven in A iy ¢ With a tracks exists. Lets(a:). be the associated polynor_‘nial
seed-codes for length > 3 and they are given in Appendix C of s, and #; be the largest integer such that there exists a

Example 2: For n = 9 and % = 7 we obtain a code of polynomial p;(x) which satisfies
length63 and period8-6-156.18.9.7 = 3969-231 = 0.969.263 . N
compared to a code of the same length and pedid8s - 263 s(z) = (x —1)"pi(x) (modz? —1).
obtained in [9].

2("_1)(’“_1)_1(7’0 + 7 )r'nk

Let ko, k1, - - -, k.—1 be the locations of the heads in the list
n—1
APPENDIX A h(x) A Z s
We discuss the generalization of Gray codes over nonbi- =0

nary alphabets. Let,, a > 2 bi the group ff residues ie head locatorpolynomial of the list, and: the associated
{0, 1, ---, a— 1} moduloa, and Z;' the set ofa” n-tuples lengthp™ word of h(z). Let 8, be the largest integer for which
over Z. there exists a polynomials(x) which satisfies,

Definition 10: For hz) = (5 — 1) po(z) (moda?” — 1),

X = [wo, 21, -+, Tp1] ) zP" —1 = (z—1)?" over GF(p) and henc® < 6,6, < p"—1.
Y =lyo, y1, -+, yn—1] € Z5. Since the distance between any two adjacent words, i$
We define follows that
=1 (& = Dh(z)s(x)
A (X, Y) = Z (yi — ;) = d(l ‘otz o+ a:pn_l) (modz?" —1) (10)
=0

and, therefore,
where the subtraction is done ifi, and the addition is an

integer addition. 0, +6, =p" —2. (12)
Definition 11: A length» period P Gray code ovetZ, is  Equation (10) also implies thét+2 is the linear complexity
an ordered list ofP distinct lengthn words overz, of i, andf, +2 is the linear complexity of. Since each word
appears in the list exactly oncemust be of full cyclic order,
Wo, Wi, -+, Wp and hence
such that for eacl) < i < P — 1, W; and W, differ in 62> p" Tt — L. (12)

exactly one coordinate and,,(W;, W;;1) = d, for a given
d € Z,. If Wp_; and W, satisfy this condition, we say thatIn order to restrict the linear complexity &f we notice that
the code iscyclic.

p—1
Single-track Gray codes are cyclic Gray codes which have Z 't =(x - 1)@_1)])' .
the single-track property. A single-track Gray code ogegris =0

equivalent to a single-track Gray code OV&[,/4ca(a,0)- FOr  Now, let us assume thad < (p—1)p"~t =1, ie.,
this reason we only consider the case whgré (a, d) = 1.

The following lemma is a straightforward generalization of its iy it o
binary equivalent. hz) Y @ =0 (moda® —1).
1=0

Lemma 14:If C is a lengthn, period P single-track Gray

code overz,, thenna| P andna < P < a" Sinceh contains only zeros and ones, and the calculations are
a —_— —_— .

performed over GFp), it follows that » has the following
All the results regarding single-track Gray codes with form:

spaced heads can be easily generalized in a very natural way. .

The nonexistence theorem can be proved for certain cases, h= [&;'_4]7 Ae G (p).

with an interesting generalization of the proof. P
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This means that but this equation can hold only jf = 2 andm = 1. Therefore,
(s = 0"+ ka)iss

and then, theith word and the(i + p™1)th word contain

exactly the same components of the generating tsa&ince

the all-zero word appears somewhere in the list, it will appe
at least twice, which is a contradiction. Therefore,

6, > (p—1)p" t—1.

61> (p—1)p" . (13)
glumming (12) and (13) we get that

61 +6:>2p" -1

The linear complexity ofh cannot be(p — 1)p"~* + 1, and this contradicts (11). |
otherwise, .
. - Corollary 3: There are no single-track Gray codes over
= et '— " GF(p), p prime, of lengthn. > 2 and periodp™, except for
h(z) z; e = z% ' (modz” —1) the trivial binary code of lengt2 and period.

for some« € GF(p), « # 0. The polynomial on the right
has p™ nonzero componentsi(z) has exactlyp™ nonzero APPENDIX B
components, and hence, the left side has at piBst nonzero

In this appendix we present the seed-codesdfern < 11
components. Thus

as shown in at the bottom of this and the top of the following

prn-l—l Z ppm—l page.
[010001010] [010001000] [011001000] [011011000] [011010000]
[011110000] [011111000] [111111000] [111111100] [111101100]
[111101110] [111111110] [111111010] [101111010] [001111010]
[011111010] [011011010] [011011110] [011010110] [010010110]
[010110110] [010111110] [010011110] [010001110] [110001110]
[110001100] [110001000] [110001010] [110001011] [110001001]
[110000001] [110100001] [010100001] [010000001] [000000001]
[000000011] [000001011] [000001001] [100001001] [101001001]
[101001011] [100001011] [100101011] [100101001] [100111001]
[110111001] [110101001] [010101001] [010101101] [011101101]
[111101101] [110101101] [110001101] [010001101] [010001001]
[010001011]
Seed-codes fon =9
[0110101110] [0111101110] [0111101010] [0101101010] [0101111010]
[0101111110] [0101110110] [0001110110] [0011110110] [0011111110]
[0011111100] [0011110100] [0111110100] [0111010100] [0101010100]
[0101010110] [0101000110] [0101100110] [1101100110] [1101100010]
[1101110010] [1101111010] [1100111010] [0100111010] [0100110010]
[0101110010] [0111110010] [0111100010] [0111100000] [0111100100]
[0111100110] [0110100110] [0110100010] [0110110010] [0010110010]
[0010100010] [0010000010] [0110000010] [1110000010] [1100000010]
[1100001010] [1100001000] [1110001000] [1110001100] [1100001100]
[1000001100] [1000011100] [1000011000] [1010011000] [1010010000]
[1010010010] [1010000010] [1010000110] [1010100110] [1010101110]
[0010101110] [0010101111] [0010100111] [0110100111] [1110100111]
[1110110111] [1110110011] [1110111011] [1110101011] [1111101011]
[1111101111] [1111001111] [1111001101] [1110001101] [0110001101)
[0110001001] [0010001001] [0000001001] [0100001001] [0100000001]
[0000000001] [0000000011] [1000000011] [1010000011] [1010000001]
[1010010001] [1011010001] [1011000001] [1111000001] [1111000101]
[1101000101] [1101001101] [1101011101] [1100011101] [1100001101]
[1100001001] [1100001011] [0100001011] [0100101011] [0110101011)
[011010111H

Seed-codes fon = 10



[10101110000]
[11101110000]
[11011100000]
[10101100000]
[10111100000]
[11111111000]
[11111011110]
[10101101010]
[10011111100]
[10010111010]
[10010011100]
[11010101100]
[11101011100]
[11111101100]
[11001101000]
[11110101000]
[10100111000]
[10010011000]
[10111010000]
[10001111001]
[01001101111]
[01001101101]
[11011101111]
[00111101111]
[00101011111]
[00101101011]
[00110011001]
[01010010001]
[00111010001]
[00001110001]
[00001101011]
[00001010011]
[00000000111]
[00000000011]
[00110000001]
[10011000001]
[11011110001]
[10101110001]

[10101010000]
[11101010000]
[11010100000]
[11101100000]
[00111100000]
[11111111100]
[10111011110]
[10111101010]
[10010111100]
[10010011010]
[10110011100]
[11011101100]
[11101010100]
[11111101000]
[11001001000]
[11110111000]
[10100101000]
[10011011000]
[10111110000]
[10001111101]
[01001101011]
[01101101101]
[11011101011]
[00101101111]
[00101010111]
[00101001011]
[00110111001]
[01010110001]
[00110010001]
[00001111001]
[00001101001]
[00001011011]
[00000000101]
[00000000001]
[00111000001]
[10001000001]
[11010110001]
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[10001010000]
[11111010000]
[11110100000]
[11101000000]
[00111110000]
[11111111110]
[10111111110]
[10111101000]
[10010111110]
[10010011110]
[11110011100]
[11011001100]
[11101110100]
[11111001000]
[11011001000]
[10110111000]
[10110101000]
[10011111000]
[10111110001]
[11001111101]
[01001111011]
[01111101101]
[01011101011]
[00101101101]
[00101010011]
[00101011011]
[01110111001]
[01011110001]
[00010010001]
[00001111011]
[00001001001]
[00001001011]
[00000001101]
[00010000001]
[00101000001]
[11001000001]
[10010110001]

[11001010000]
[11011010000]
[10110100000]
[10101000000]
[00111111000]
[11011111110]
[10101111110]
[10111111000]
[10010101110]
[10010010110]
[11010011100]
[11111001100]
[11101111100]
[11101001000]
[11011101000]
[10110011000]
[10010101000]
[10011110000]
[10011110001]
[11001101101]
[01001111111]
[01011101101]
[01111101011]
[00101001101]
[00101110011]
[00101011001]
[01110110001]
[01011010001]
[00010110001]
[00001110011]
[00001011001]
[00001000011]
[00000001001]
[10010000001]
[00001000001]
[11001010001]
[10110110001]

Seed-codes fon = 11

[11001110000]
[11011110000]
[10100100000]
[10111000000]
[01111111000]
[11011011110]
[10101101110]
[10111111100]
[10010101010]
[10010010100]
[11010111100]
[11101001100]
[11101101100]
[11101101000]
[11010101000]
[10100011000]
[10010111000]
[10011010000]
[10001110001]
[11001101111]
[01001111101]
[11011101101]
[00111101011]
[00101001111]
[00101111011]
[00111011001]
[01110010001]
[00011010001]
[00011110001]
[00001100011]
[00001010001]
[00001000111]
[00000001011]
[10110000001]
[00011000001]
[11001110001]
[10100110001]
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APPENDIX C

[001] [011]

Seed-codes fon = 3

[0001] [0011]

Seed-codes fon = 4

[00011]

[00111]

[01111]

[01101]

Seed-codes fon = 5

[00101]

In this appendix we present the seed-codes of the second constructiéh forn < 8 as shown on this page and
the top of the following page.
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[000001] [000011] [000111] [001111] [011111] [011101] [001101] [000101]
Seed-codes fon = 6
[0000001] [0000101] [0001101] [0001001] [1001001] [1011001]
[1111001] [1111101] [0111101] [0110101] [0110111] [0100111]
[0100101] [1100101] [1000101] [1000111] [0000111] [0000011]
Seed-codes fon = 7
[00000001] [00000011] [00000111] [00010111] [00010011] [00011011]
[00011001] [00011101] [00010101] [00101011] [00100101] [00100111]
[00101111] [00101101] [00111101] [00111111] [00111011] [01101111]
[00110111] [00110101] [01010111] [01011111] [00011111] [00001111]
[00001101] [00001001] [00001011] [00000101]
Seed-codes forn = 8
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