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Abstract—Single-track Gray codes are cyclic Gray codes with
codewords of lengthn, such that all the n tracks which cor-
respond to the n distinct coordinates of the codewords are
cyclic shifts of the first track. We investigate the structure of
such binary codes and show that there is no such code with
2n codewords whenn is a power of 2. This implies that the
known codes with 2n � 2n codewords, whenn is a power of
2, are optimal. This result is then generalized to codes over
GF (p), where p is a prime. A subclass of single-track Gray
codes, called single-track Gray codes withk-spaced heads, is
also defined. All known systematic constructions for single-track
Gray codes result in codes from this subclass. We investigate this
class and show it has a strong connection with two classes of
sequences, the full-order words and the full-order self-dual words.
We present an iterative construction for binary single-track Gray
codes which are asymptotically optimal if an infinite family of
asymptotically optimal seed-codes exists. This construction is
based on an effective way to generate a large set of distinct
necklaces and a merging method for cyclic Gray codes based
on necklaces representatives.

Index Terms—Cyclic Gray codes, feedback shift-register, linear
complexity, necklaces, self-dual sequences, single-track codes.

I. INTRODUCTION

GRAY codes were found by Gray [15] and introduced
by Gilbert [14] as a listing of all the binary -tuples

in a list such that any two successive-tuples in the list
differ in exactly one position. Generalization of Gray codes
were given during the years. Such generalizations include
the arrangements of other combinatorial objects in a such
way that any two consecutive elements in the list differ
in some prespecified, usually small way [14], [15]. Other
generalizations include listing subsets of the binary-tuples
in a Gray code manner, in such a way that the list has
some more prespecified properties. These properties were
usually forced by a specific application for the Gray code.
As an example we have the uniformly balanced Gray codes.
In certain applications, it is needed that the number of bit
changes will be uniformly distributed among the bit positions.
Uniformly balanced Gray codes were shown to exist for
which is a power of by Wagner and West [25]. Recently,
Bhat and Savage [2] have shown that such codes exist for all

. During the years Gray codes and their generalizations have
found applications in a variety of areas such as information
storage and retrieval [4], processor allocation in the hypercube
[5], statistics [7], codes for certain memory devices [8],
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hashing [10], puzzles, such as the Chinese Rings and Tower
of Hanoi [13], ordering of documents on shelves [19], signal
encoding [20], data compression [22], and circuit testing [23].
Finally, for an excellent survey on Gray codes the interested
reader is referred to [24].

The classic example of a Gray code is thereflected Gray
code [14], [15]. This code is a list of the binary -
tuples in the following way. For the list consists
of the words and . Given the list of the binary

-tuples, we generate the list of the binary -tuples
by attaching a ZERO as a prefix to every element of the
list in its order, and then attaching a ONE as a prefix
to every element of the same list in reversed order. As
an example, for the list of the reflected Gray code is

One of the properties
of the reflected Gray code is that there is a change in the last
coordinate of every other word. We will use this property later.

In this paper we discuss another class of Gray codes,
single-track Gray codes. A single-track Gray code is a list
of distinct binary words of length , such that each two
consecutive words, including the last and the first, differ in
exactly one position and when looking at the list as an
array, each column of the array is a cyclic shift of the first
column. These codes were defined by Hiltgen, Paterson, and
Brandestini [16] who also gave their main application. A
length , period Gray code can be used to record the
absolute angular positions of a rotating wheel by encoding
(e.g., optically) the codewords on concentrically arranged
tracks. Then reading heads, mounted in parallel across
the tracks suffice to recover the codewords. When the heads
are nearly aligned with the division between two codewords,
any components which change between those words will be
in doubt and a spurious position value may result. Such
quantization errors are minimized by using a Gray code
encoding, for then exactly one component can be in doubt
and the two codewords that could possibly result identify the
positions bordering the division, resulting in a small angular
error. When high resolution is required, the need for a large
number of concentric tracks results in encoders with large
physical dimensions. This poses a problem in the design of
small-scale or high-speed devices. Single-track Gray codes
were proposed in [16] as a way of overcoming these problems.
Note, that since all the columns in these codes are cyclic shifts
of the first one, it follows that the code is also a uniformly
balanced Gray code, which again can be described by a single
column. Not many constructions for single-track Gray codes
are known. All these constructions are given in [9] and [16].
None of the known constructions is known to produce an
infinite family of optimal codes, where by the word optimal we
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mean that the code has the largest period for a given length
. The main goal of this paper is to study the structure of

these codes and to construct codes with periodas large as
possible. In this context we will say that codes of an infinite
family are asymptotically optimal if

(1)

where is the code length and is its period.
In Section II, we present the formal definitions for single-

track Gray codes. Then, we discuss the known construction
methods and structure of single-track Gray codes mainly
of those generated by the known construction methods. We
discuss all the main known results in this area. In Section
III, we present an improvement to one of the known upper
bounds, i.e., we show that single-track Gray codes with words
of length and period do not exist even if is a power of .
This proof establishes as a corollary that Etzion and Paterson
[9] have constructed an infinite family of optimal single-track
Gray codes. In Section IV, we present an iterative construction
for Gray codes of length from specific classes of Gray
codes of lengths and . This class is infinite and the codes
constructed are asymptotically optimal, given infinite families
of asymptotically optimal seed-codes for the construction. For
example, if we have infinite families of optimal seed-codes
for length and length , , then our construction
produces an infinite family of optimal codes for length ,

, .

II. THE STRUCTURE OFSINGLE-TRACK GRAY CODES

In this section we present the formal definitions for single-
track Gray codes. Then, we present some basic properties of
such codes and the idea of the main two known methods
to construct such codes. These two methods provide single-
track Gray codes with additional special properties. We further
investigate these properties. We also outline the results of past
work in this area.

Let be a length word. Thecyclic
shift operator, , is defined by
and the complementary cyclic shift operator is defined
similarly by , where is the
binary complement of . Two length words are
said to beequivalent if there exists an integer such that

, where is consecutive applications of .
The equivalence classes under the shift operator are called
necklaces. Efficient algorithms for producing necklaces of a
given length are given in [11], [12], and [21]. A length
word is calledself-dual if for each
, , . Finally, for any two positive

integers and , denotes the greatest common
divisor of and .

Definition 1: Let be a length word. We define the
cyclic order of as

and thecomplementary cyclic orderof as

If we say that has full cyclic order (or full-
order in short), and if we say that is a
full-order self-dual word.

Definition 2: A length period Gray codeis an ordered
list of distinct binary length words

such that each two adjacent words differ in exactly one
coordinate. If and also satisfy this condition, we
say the code iscyclic.

Definition 3: Let be an ordered list of length words

For each we denote the components of as

The th track of , for , is defined as

We say that has thesingle-track propertyif there exist
integers

called thehead positions, where , such that
for each . For each , is

called theposition of the th head. The first track is called the
generating trackof the code.

Definition 4: Let be an ordered list of length words

We say that is a length , period single-track Gray code
if is a cyclic Gray code and has the single-track property.

The main goal is now to construct a length, period
single-track Gray code, where is as large as possible.

Bounds on are of a special interest and a very straightfor-
ward result is the following lemma.

Lemma 1 [16, Lemma 2]:If is a length , period
single-track Gray code, then and .

There are only a few constructions for single-track Gray
codes [9], [16]. None of them attains the upper bound forced
by Lemma 1 for infinitely many values of. Each of these
constructions is based on one of the following methods.
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Theorem 1 [9, Theorem 4]:Let be
length binary pairwise nonequivalent full-order words, such
that for each , , and differ in exactly one
coordinate, and there also exists an integer, ,
such that and differ in exactly one coordinate, then
the following words form a length , period single-track
Gray code

...
...

Theorem 2 [9, Theorem 15]:Let be
length self-dual full-order pairwise nonequivalent words.
For each , , let and
let

where superscripts are taken modulo.
If for each , and differ in exactly two

coordinates, and there also exists an integer, ,
such that and differ in exactly two coordinates, then
the following words form a length , period single-track
Gray code:

...
...

Now, in order to construct a single-track Gray code we want
to order as many as possible full-order words of length, or
full-order self-dual words of length in a way which satisfies
either Theorems 1 or 2, respectively. Hiltgen, Paterson, and
Brandestini [16] suggested a method for ordering lengthfull-
order words in a way which satisfies the conditions of Theorem
1. Their result is summarized in the following theorem.

Theorem 3 [16, Theorem 3]:If , then there exists a
length , period single-track Gray code for each even
which satisfies

Etzion and Paterson [9] supplied three iterative construc-
tions. The first construction produces a special arrangement of

pairwise nonequivalent full-order words of length,
which satisfies the conditions of Theorem 1 from a special
arrangement of full-order words of length which satisfies
the same conditions. If is prime and such arrangement of
the pairwise nonequivalent full-order words is known,
then the construction produces a length, period
single-track Gray code. This is an optimal code based on
Theorem 1, but by using Theorem 2 it might be possible
to obtain a length period single-track Gray code.
Such a code may exist since there are exactly four words of
length which are lying in nonfull-order self-dual necklaces.

This comparison is important as all the known codes are
obtained from these two constructions and no code which is
not obtained by these construction or a variant of Theorem 2,
which will be mentioned later in this section, is known.

The second construction of [9] which is a generalization
of the first one in a certain sense produces a length,
period single-track Gray code, where

, from a code of length and period .
This code is far from being optimal in any sense. In Section
IV, we improve this result for most cases, by producing better
codes for similar parameter lengths.

The third construction of [9] is based on Theorem 2 and
generates an infinite family of asymptotically optimal codes.
These codes have length , , and period .
As we will see in the next section, this construction actually
produces optimal codes since the upper bound given in Lemma
1 on the period of length , period single-track Gray code,
for which is a power of , can be improved. A similar
construction can be given for’s which are not powers of

. Unfortunately, we need some seed-codes with some given
properties to obtain better codes for other parameters, and these
seed-codes have not been found yet.

Definition 5: Let be a length , period single-track
Gray code, and let the head positions be .
We say that has -spaced headsif

for each .

It is important to note that all the constructions for single-
track Gray codes known today produce codes which are either
with -spaced heads or with a self-dual generating track which
can produce a single-track Gray code with-spaced heads, as
will be proved later in this section. As a first step we want
to show that all -spaced heads single-track Gray codes are
generated by the construction method of either Theorems 1
or 2.

Definition 6: Let be a set of words. Thecyclic orderand
complementary cyclic orderof the code are defined as

Theorem 4: Let be a length , period single-track Gray
code with -spaced heads.

• If is even then

— .

— for each .

— There exists an ordering of length
necklace representatives of cyclic order, which
satisfies the requirements of Theorem 1.

• If is odd then

— .

— for each .

— There exists an ordering of length self-
dual necklace representatives of full cyclic order,
which satisfies the requirements of Theorem 2.
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Proof: Without loss of generality (w.l.o.g.) we assume
that . Let be a length , period single-track Gray
code with -spaced heads. Let be the
generating track of . The th word, , of has the form

and hence

We now distinguish between two cases.
Case 1: is even. Since is a Gray code, it follows

that the parity of and is the same, and hence
and . Therefore, for each , ,

which satisfy there exists an such
that . Now, let be a word in for which

. Since , it follows that

and

for each . Since each word appears at most
once in the code, it follows that and
hence for each , and for
each , which means that and,
therefore, .

It is well known that divides , and if ,
then the weight of all the words is divisible by .
Therefore, no two words differ in exactly one coordinate.
Thus .

It is obvious that the list forms
a Gray code, and since , it follows that
all the words in it are pairwise nonequivalent. Moreover, there
exists such that . Therefore, there exists

such that which implies

Since is an integer, it follows that
Thus the list satisfies all the require-
ments of Theorem 1.

Case 2: is odd. The parity of is different from the
parity of , and hence . The rest of the proof
is similar to the one of Case 1, where we use and
instead of and , respectively.

Single-track Gray codes with-spaced heads have some
additional properties as the one given in the following lemma.

Lemma 2: If is a length , period single-track Gray
code with -spaced heads, odd, then the generating track of
the code is self-dual.

Proof: Let be a length , period single-track Gray
code with -spaced heads, odd, and its generating track.
From the proof of Theorem 4 there exists an integer, for
which , such that

for each . Since is even, it follows that is
odd and, therefore,

and the generating track is self-dual.

When the generating track of a single-track Gray code is
self-dual, many other single-track Gray codes can be generated
by selecting any subset of the columns and complementing
them. These new single-track Gray codes do not necessarily
have -spaced heads. These are the only known single-track
Gray codes which cannot be constructed directly by the use
of either Theorems 1 or 2. However, they are, of course,
constructed by a straightforward variant of Theorem 2. More-
over, as an immediate consequence from Theorem 4 we can
conclude that there is no similar arrangements as in Theorems
1 and 2 of feedback shift-register sequences of order. It is a
very interesting problem to construct single-track Gray codes
which do not have -spaced heads and are not constructed
by this variant of Theorem 2. Note, that if is odd then by
complementing every other column of the code generated by
Theorem 2 we obtain a code which can be constructed via
Theorem 1.

III. N ONEXISTENCE RESULT

Let be a single-track Gray code of lengthand period
. By Lemma 1, there is a theoretical possibility that ,

but then, necessarily, is a power of . The only known
code with these parameters is the lengthperiod single-
track Gray code. In this section we show that there is no
other code with such parameters. The proof will consider
the track as a sequence of length and investigate the
polynomial of minimal degree which generates this sequence.
In the literature, the degree of this polynomial is often called
the linear complexity of the sequence. Hence, we first present
the necessary definitions for this discussion.

Definition 7: Let be a length
sequence, and let

be a polynomial. We say the is theassociated polynomial
of , and is the associated wordof .

Definition 8: Let be a length sequence over GF .
The linear complexityof is defined as

The linear complexity as defined here is the same as the
degree of the minimal degree linear recursion which generates
the sequence. This is the more common definition as given
in [18].
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Lemma 3: Let be a length sequence over GF ,
where , prime. The linear complexity of is if
and only if

(2)

for some .

Lemma 4 [3, Theorem 2]:Let be a length binary
sequence. is self-dual if and only if .

We will prove now a result which is stronger than the
nonexistence result that we actually want to prove.

Theorem 5: There is no ordering of all the words of
length , , in a list which satisfies all the
following requirements.

1) Each two adjacent words have different parity.
2) The list has the single-track property.
3) Each word appears exactly once.

Proof: Let us assume the contrary, i.e., letbe the
track of a single-track code in which each-tuple appears
exactly once and each two adjacent words have different
parity. Let be the associated polynomial of and
the largest integer for which there exists a polynomial
which satisfies

(3)

Let be the locations of the heads in the list

the head locatorpolynomial of the list, and the associated
length word of . Let be the largest integer for which
there exists a polynomial which satisfies

(4)

Since over GF , it follows that ,
. Since each two adjacent words have different

parity it follows that

(5)

Since and

it follows from (2)–(5) that

(6)

Equations (2)–(5) also imply that is the linear com-
plexity of , and is the linear complexity of . Since
each word appears in the list exactly once, it follows that
must be of full cyclic order, and hence

(7)

If we assume that is not a full-order word, then

and the th word and the th word contain exactly
the same components of the generating track. The all-zero
word appears somewhere in the list, and hence it will appear
at least twice, which is a contradiction. Thusis of full-order
and, therefore, .

Self-dual sequences of length have weight and
since has weight , it follows that is not self-dual when

, and hence by Lemma 4 the linear complexity ofis
not . Therefore,

(8)

Summing (7) and (8) we get that

in contradiction to (6). Thus no such single-track code with
track exists.

Corollary 1: There are no single-track Gray codes of length
and period .

As mentioned in Section II, Etzion and Paterson [9] have
constructed single-track Gray codes of length and
period .

Corollary 2: The single-track Gray codes of length
and period are optimal.

The nonexistence theorem can be generalized in a very
interesting way to single-track Gray codes over GF, where

is a prime. We discuss nonbinary codes and present this
generalization of the nonexistence theorem in Appendix A.

IV. A N ITERATIVE CONSTRUCTION

In this section we describe an iterative construction which
generates long-period single-track Gray codes. We are given
two pairs of disjoint Gray codes, of lengths and , of
pairwise nonequivalent full-order words. Each pair satisfies a
set of properties needed for the construction. The construction
itself is made of five stages. The first stage is an iterative
generation of a large number of pairwise nonequivalent, full-
order words. The second is ordering of the necklaces into many
Gray codes. The third stage consists of merging these Gray
codes into two sets of Gray codes. In the fourth stage, the
Gray codes of each set are concatenated into two cyclic Gray
codes which satisfy the properties needed for the construction.
The last stage is a simple merging of these two Gray codes
into one Gray code.

A. Nonequivalent Necklaces Generation

The first step in generating a long single-track Gray code
based on necklaces, is to generate a large set of pairwise
nonequivalent full-order words, known also as Lyndon words
[1]. This construction should generate the necklaces in such
a way that it will be easy to order them into a Gray code.
The construction of these pairwise nonequivalent words will
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be iterative, i.e., given two sets of pairwise nonequivalent full-
order words of length and length , respectively, we generate
a set of pairwise nonequivalent full-order words of length.
We first partition the set of all binary -tuples into two sets,
those ending in a ZERO and those ending in a ONE, i.e., for
each , we define

Construction 1: For each , let

be sets of pairwise nonequivalent, full-order words, such that

From these sets we generate the following set:

Theorem 6: The set of Construction 1 contains pair-
wise nonequivalent full-order words of length .

Proof: Let

and

be two words in the defined set . Let us assume that
for some . Now

where and , .
For , and are nonequivalent, and hence

. For , and are nonequivalent, and,
therefore, , which implies .

is a full-order word, and hence . This implies, that
if we look at

then . As before, and are nonequiv-
alent full-order words, and hence or . There-
fore, and thus all the words in are pairwise
nonequivalent.

Construction 1 produces iteratively a large set of pairwise
nonequivalent, full-order words. This set is generated in a way
which makes it relatively easy to order its necklaces in a cyclic
Gray code, provided that the elements of , , ,
can be ordered as cyclic Gray codes.

B. Generation and Merging of Gray Codes

Given a Gray code of length , we will generate many
Gray codes of the same period and length, for which all
words belong to distinct necklaces. Those Gray codes will be
then merged into two sets of Gray codes. The generation of
one such short Gray code and the merging of some of these
Gray codes will be based on the following two trivial lemmas
whose proofs are omitted.

Lemma 5: If the words form
a cyclic Gray code, then the following words form a cyclic
Gray code:

...

where for each .

Lemma 6: Let for each and
for some , , let be a word
such that differs from in exactly the th coordinate.
Furthermore, the necklaces form
a cyclic Gray code in which, for some, and differ
in the th coordinate. Then, the necklaces shown at the top of
the following page form a cyclic Gray code in which the last
and first pair of necklaces differ in the th coordinate.

C. A Set of Properties for the Codes

In order to make an iterative construction of Gray codes
based on pairwise nonequivalent full-order words we need our
Gray codes to satisfy certain additional properties. One of the
important properties concerns the positions in which adjacent
words in the code differ.

Definition 9: Let , be words of length which differ
only in the th coordinate. We define

We are now in a position to state the set of properties
required for some Gray codes based on distinct necklaces in
order to obtain the iterative construction. Let
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...

...

be cyclic Gray codes such the following properties are satis-
fied.

(p.1) The sets of necklaces which belong to , , ,
, respectively, satisfy the conditions of Construc-

tion 1.
(p.2)

• The words , are adjacent in .
• .

(p.3)
• There exist , such that and differ

in exactly the last coordinate, and also and
differ in exactly the last coordinate. We say

that and are thebridging indicesof and
, respectively, and that , , ,

are thebridging wordsof their respective codes.
• There exist , such that and differ

in exactly the last coordinate, and also and

differ in exactly the last coordinate. We say

that and are thebridging indicesof and
, respectively, and that , , ,

are thebridging wordsof their respective codes.

(p.4)
• Let be the index for which ,

, , and let and be the
bridge indices of and , respectively, then

• Let and be the bridge indices of and
, respectively, then

For , we say that and satisfy property(p.i),
, if , , , , satisfy (p.i).

D. Generation of Short Gray Codes

We are given the four cyclic Gray codes , , ,
based on pairwise nonequivalent full-order words of period

and , respectively. We partition the necklaces generated
by Construction 1 into disjoint Gray codes, where each Gray
code corresponds to a necklace

. Let be the parity of . For any
choice of , for each , we use Lemma
5 to construct a cyclic Gray code with the words

This code is of length and period and will be denoted by

By Theorem 6, all the words in this code are pairwise
nonequivalent, full-order words.

For the given we continue and merge all its cyclic Gray
codes into one Gray code. There are Gray codes
which are related to and we want to order them in such a
way that it will be simple to merge them in the given order.
The merging will be performed as done in Lemma 6. To apply
this lemma we need two Gray codes

and

such that and differ in exactly one coordinate. This
coordinate is not the last one since the last coordinate is
predetermined by . Thus we should order the
sequences of the form

in such a way that any two differ in exactly one coordinate.
This is a Gray code ordering and most (and usually all)
Gray codes are good for this purpose. But, for simplicity of
construction we will choose the reflected Gray code, which
was introduced in Section I, and in the appropriate positions
we will plug in the predetermined values of. We call this
code, themerging Gray codeand we require another property
from the merging Gray code (and this property can be removed
if we request some more properties from the four Gray codes
of length and , which can be easily obtained). As said
in the Introduction, half of the changes in a reflected Gray
code are in one specified coordinate (usually the last one). We
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require that this coordinate will not be congruent moduloto
, , or , , or . This can be done

easily by an appropriate permutation on the code coordinates.
After this is done in the generated merging Gray code no two
consecutive changes are in a coordinate congruent to ,

, or , , or , modulo . Our Gray code
of length and period will be denoted by

We note that in

We are now in a position to merge all the Gray codes
which are related to . During this merging we make sure
that each two adjacent words of length constructed from
either bridging words or the words and will
remain adjacent. The merging starts with the code
and the code . Since and differ in exactly
one coordinate, say, theth coordinate,

then it is possible to merge the latter
into the former using(p.4) and Lemma 6. The resulting code
will be called themain code. In a typical step of the merging
we have a main code obtained by merging the following Gray
codes:

...

and we merge to it the Gray code . Let

was chosen in a way that if then
, , and .

Hence, in this case and also when , by (p.4)
and Lemma 6 there is a pair of adjacent words in ,
originated from a pair of adjacent words in , which are not
the bridging words or the words , . Therefore,

can be merged by Lemma 6. This merging process
ends when all the Gray codes

...

are merged together. The resulting code is called .

Lemma 7: For each ,

, the code is a cyclic
Gray code of length and period which
satisfies

Proof: It is obvious that is of length , and since
we merged codes of period , it follows that the
period of the resulting code is . By Lem-
ma 6, the resulting code is a cyclic Gray code. Finally, since

it follows by Lemma 6, and(p.4) that

E. Concatenation of the Short Gray Codes

Now we have a set of cyclic Gray codes, each
corresponds to a different member of . Recall that
the bridging indices of , , , are , , , ,
respectively. Let be words
of length chosen arbitrarily. For each

and

we define for each . We cyclically
shift the rows of the cyclic Gray code , in such a way
that the first word will be

and the last word will, therefore, be

We look at the following two concatenations of our cyclic
Gray codes:

In the rest of this subsection and in the next subsection we
will prove that and is a pair of cyclic Gray codes of
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pairwise nonequivalent full-order words, which satisfies prop-
erties (p.1)–(p.4) and thus can be used for further iterations
of the construction.

Lemma 8: and are cyclic Gray codes of length
and period

and

respectively. Furthermore, and contain pairwise
nonequivalent full-order words.

Proof: All the necklaces of and were produced
as in Construction 1 and hence, by Theorem 6, all the words
are pairwise nonequivalent full-order and of length.

For a given

and

clearly

has period , where is the parity of . was constructed
by merging Gray codes of the form

and hence its period is . Since and
have different parity, it follows that and
together have necklaces, and has

words. To complete the proof we
have to show that is a cyclic Gray code. As said before
the last word in is

where is the parity of , and the first word in is

Clearly, these two words differ in exactly one coordinate. If
and differ in the th coordinate, ,

then for each , , , and and

differ in the last coordinate. Since by(p.3) and
differ in exactly the last coordinate, it follows that the last
word of and the first word of differ in exactly
the th coordinate. Thus is a cyclic Gray
code of length and period .

F. Properties of the Generated Gray Codes

In this section we will prove that the generated Gray codes
and satisfy (p.1)–(p.4) and, therefore, can be used

for further iterations of the construction. The first lemma is an
immediate consequence of Lemma 8.

Lemma 9: and satisfy (p.1).

Lemma 10: The words and are adjacent
in .

Proof: By (p.2) we have that and
and are adjacent in . Therefore, the words

and are adjacent in .
Since during the merging process we did not separate these
words, it follows that they are also adjacent in . To
complete the proof we have to show that these two words were
not separated during the concatenation. This is an immediate
consequence from the fact that is not a bridging word
since is not a full-order word.

Lemma 11: satisfy (p.3).
Proof: Observe that the last word of , which is also

the last word of is

where is the parity of . The first word of , which is

also the first word of is

where clearly is the parity of . Since and
differ in exactly the last coordinate, it follows that these two
words differ exactly in the last coordinate. Similarly, the first
word of and the last word of differ in exactly the last
coordinate. Therefore, these four words can serve as bridging
words of and .

Lemma 12: Let be the
index such that

and and be the bridging indices of and , res-
pectively. Then

Proof: If , then by Lemma 7

where . By the proof of Lemma 8
we obtain the changes in all positions which are congruent to

modulo in the concatenation of the short Gray codes,
and thus by taking into consideration(p.3) for and ,
and the fact that one change in a coordinate implies at least
two changes in the same coordinate we have
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In Lemmas 9–12, we have proved that the pair of codes
, satisfy properties(p.1)–(p.4). Thus we can use this

pair of codes for another iteration of the construction.

G. Optimality of the Code

Lemma 13: Concatenating the two codes given by the
construction

produces a Gray code of pairwise nonequivalent, full-order
words of length and period
which satisfies the conditions of Theorem 1.

Proof: By Lemmas 8 and 11, is a cyclic Gray code
of pairwise nonequivalent full-order words of the required
parameters. In addition, by Lemma 10, the words ,

are adjacent in the code. The code can be cycli-
cally shifted so they become the first and last words. Since

and differ in exactly one coordinate, the
conditions of Theorem 1 are satisfied.

The code of Lemma 13 can be used in Theorem 1 to produce
a single-track Gray code of length and period

In order to use the construction, we need seed-codes which
satisfy properties(p.1)–(p.4). Such seed-codes may exist only
for . A simple computer search has found such seed-
codes, which contain all full-period words, for length– .
The seed-codes for and , are presented in
Appendix B.

Example 1: Let be a prime for which
. We conjecture that this assumption holds for all

primes greater than and we know it holds for and
. We obtain a code of length and period

Applying the construction iteratively we obtain a code of
length and period . The ratio between
the period and the total number of words of length is

.
If we assume that

and

then, by Lemma 13, one iteration of the construction gives a
single-track Gray code of length and period

If we further assume that

(9)

then the period asymptotically reaches the upper bound of
Lemma 1

When we have that

Under assumption (9), we get, again, that

which means that the family of codes generated by any number
of iterations of the construction is still asymptotically optimal.
Of course, as said before, one needs an infinite family of
optimal seed-codes to make the resulting sequence of codes
also optimal. If we start with “good” codes which are not
optimal we obtain codes which are usually better than the best
known codes.

H. Generalization

As mentioned before, seed-codes for our construction exist
only for length . This fact limits the list of lengths
for which we can obtain good single-track Gray codes by our
construction. We can overcome this limitation by weakening
the requirements induced by the properties(p.1)–(p.4). Let

be cyclic Gray codes, such that the following properties hold.

(q.1) The sets of sequences which belong to, satisfy
the conditions of Construction 1, and contains
pairwise nonequivalent, full-order words.

(q.2)
• The words , are adjacent in .
•

(q.3) There exist , such that and differ in
exactly the last coordinate, and also and
differ in exactly the last coordinate. We say that

and are thebridging indicesof and ,
respectively, and that , , , are the
bridging wordsof their respective codes.

(q.4) Let be the index for which

and let and be the bridging indices of and
, respectively, then

Unlike our first construction, this one is not symmetric
relative to the parametersand of the seed-codes. Therefore,
we say that , are themultiplied codesand is the
multiplier code. The construction process itself is very similar
to our first construction. We start by constructing for each

, the code . As before, we concatenate the codes
to get the main code
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This code contains pairwise nonequivalent full-order words of
length and satisfies all the properties of a multiplier code.
Using Theorem 1 we can obtain a length, period

single-track Gray code, when . If then the only
word of length used is and we use only . In this case,
the construction coincides with the first construction of [9] and
we obtain a length , period single-track Gray code.
Unlike our first construction, this construction has multiplier
seed-codes for length and they are given in Appendix C.

Example 2: For and we obtain a code of
length and period
compared to a code of the same length and period
obtained in [9].

APPENDIX A

We discuss the generalization of Gray codes over nonbi-
nary alphabets. Let , be the group of residues

modulo , and the set of -tuples
over .

Definition 10: For

We define

where the subtraction is done in and the addition is an
integer addition.

Definition 11: A length period Gray code over is
an ordered list of distinct length words over

such that for each , and differ in
exactly one coordinate and , for a given

. If and satisfy this condition, we say that
the code iscyclic.

Single-track Gray codes are cyclic Gray codes which have
the single-track property. A single-track Gray code overis
equivalent to a single-track Gray code over . For
this reason we only consider the case where .
The following lemma is a straightforward generalization of its
binary equivalent.

Lemma 14: If is a length , period single-track Gray
code over , then and .

All the results regarding single-track Gray codes with-
spaced heads can be easily generalized in a very natural way.
The nonexistence theorem can be proved for certain cases,
with an interesting generalization of the proof.

Theorem 7: Except for and , there is no
ordering of all the words of length over GF ,
where and is a prime, in a list which satisfies all the
following requirements.

1) There exists a nonzero constant GF , such that
for any two consecutive words in the list and
we have , , .

2) The list has the single-track property.
3) Each word appears exactly once.

Proof: Let us assume the contrary, i.e., that such a code
with a track exists. Let be the associated polynomial
of , and be the largest integer such that there exists a
polynomial which satisfies

Let be the locations of the heads in the list

the head locatorpolynomial of the list, and the associated
length word of . Let be the largest integer for which
there exists a polynomial which satisfies,

over GF and hence , .
Since the distance between any two adjacent words is, it
follows that

(10)

and, therefore,

(11)

Equation (10) also implies that is the linear complexity
of , and is the linear complexity of . Since each word
appears in the list exactly once,must be of full cyclic order,
and hence

(12)

In order to restrict the linear complexity of, we notice that

Now, let us assume that , i.e.,

Since contains only zeros and ones, and the calculations are
performed over GF , it follows that has the following
form:

GF



2394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

This means that

and then, the th word and the th word contain
exactly the same components of the generating track. Since
the all-zero word appears somewhere in the list, it will appear
at least twice, which is a contradiction. Therefore,

The linear complexity of cannot be ,
otherwise,

for some GF , . The polynomial on the right
has nonzero components. has exactly nonzero
components, and hence, the left side has at most nonzero
components. Thus

but this equation can hold only if and . Therefore,

(13)

Summing (12) and (13) we get that

and this contradicts (11).

Corollary 3: There are no single-track Gray codes over
GF , prime, of length and period , except for
the trivial binary code of length and period .

APPENDIX B

In this appendix we present the seed-codes for
as shown in at the bottom of this and the top of the following
page.

Seed-codes for

Seed-codes for
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Seed-codes for

APPENDIX C
In this appendix we present the seed-codes of the second construction for as shown on this page and

the top of the following page.

Seed-codes for

Seed-codes for

Seed-codes for
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Seed-codes for

Seed-codes for

Seed-codes for
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