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Efficient Encoding Algorithm for Third-Order For higher orderg of spectral null, Karabed and Siegel presented
Spectral-Null Codes in [2] a coding method based upon finite-state diagrams (see also
Monti and Pierobon [4]). However, since the rate of their construction
Vitaly Skachek, Tuvi EtzionMember, |EEE is strictly less tharl, the resulting redundancy is linear in the code
and Ron M. RothSenior Member, IEEE lengthn. It follows that for any fixedt and sufficiently large:, this

redundancy is significantly larger than the upper boGi@” - log n)
Abstract—An efficient algorithm is presented for encoding uncon- 5 the redundancy ofS(n,%); this bound is proved in [5] by

strained information sequences into a third-order spectral-null code of nonconstructive arquments. A recursive construction is presented
length n and redundancy 91log, n + O(loglogn). The encoding can 9 ) P

be implemented usingO(n) integer additions and O(nlogn) counter in [5] whose redundancy i€)(n'~“*), where0 < e < 1 and
increments. limi—. € = 0. Yet, this redundancy is still considerably larger

than the actual redundancy 6f(n. k).

In this correspondence, we present an efficient algorithm for en-
coding unconstrained sequences into a third-order spectral-null code
whose redundancy is logarithmic in the code length. More specifi-
Let F be the bipolar alphabeft+1, —1}. A word cally, for code lengtt, the redundancy i8log, n+QO(loglog n) bits
and the encoding complexity {3(r) additions ofO(log n)-bit inte-
gers and)(n log n) increments/decrements fibg, n]-bit counters.

Index Terms—DC-free codes, spectral-null codes.

. INTRODUCTION

L = (Jflvl’z,"',l‘”)

in F" is a kth-order spectral-null word(at zero frequency) if the
respective real polynomial; z + 22> + --- + 2, 2" is divisible by

(z—1)*. We denote byS(n. k) the set of allkth-order spectral-null It was shown in [5] that the length of a third-order spectral-
words inF™. Any subset of S(n, k) is called akth-order spectral- null word is divisible by4, so we can writex = 21 for some even
null codeof lengthn. The concatenation of ariywords inC yields a integer . We will use the definition ofS(2h, 3) that is obtained

Il. A THIRD-ORDER SPECTRAL-NULL ENCODER

word in S(nl, k); so, spectral-null codes can be used as block cod#em (1) by substitutingk = 3 andc = —% — L. It will also be
with a redundancyof » — log, |C| bits (per block of lengthr). convenient hereafter to index the entries of a real wordf length
The setS(n, k) is equivalently characterized by 2h by (x—p,®_py1,- -, 2h—1). We define themomentsof such a
. word z by
Sln,k)y=<xz € F": j+e)ae; =0 (=01,... k-1 qop 1t
(n, k) { ;(1 ) a; , } oo(z) & Zje'-rp (=0.1.2.--.
(1) =k

Clearly, a wordz € F" is in S(2h,3) if and only if

wherec is any real constant (see [5], and [6, Ch. 9]).

First-order spectral-null codes are also known by the nalpads
anced codes, zero-disparity codesDC-free codesThere are known  The following is an outline of our encoding algorithm. Let= 2k
efficient encoding algorithms for these codes due to Knuth [3)hereh is even and lein be the integeflog, n] = 1 + [log, &].
Al-Bassam and Bose [1], and Tallini, Capocelli, and Bose [8]The input to the algorithm is a balanced waydover ¥ of length
Those algorithms result in codes with redundancy at rfiesf, n], 2k — 6m + 2; namely,y is a word inS(2h — 6m + 2,1) that
where n is the code length. By “efficient” we refer to the timeis generated from the raw data by any known DC-free encoder (e.g.,
and space complexity of the encoding; for example, in one 6%l, [3], or [8]). Our algorithm regardg as a subword of a word
Knuth's algorithms, the complexity amounts to a lookup table af of lengthn over F U {0}, where the remaining entries of are
[log, n]* bits and O(n) increments/decrements of [dog, n]-bit initially set to zero; hencego(z) = 0. Next, the algorithm reduces
counter (as shown in [3], the space requirement can be eliminatedtdyzero the absolute values ot (x) and o (z) (in that order), by
increasing the redundancy lieg, n + O(loglog n)). The redundancy a sequence of bit shifts and bit swaps, and by assigning values of
of S(n, 1) is £ log, n + O(1), and such redundancy can be attained’ to the zero entries of. At this point, z becomes a word in
by enumerative coding [6, p. 117]. In terms of complexity, howeve&(2h, 3). The encoding ends by coding recursively certain counters
enumerative coding is less efficient than Knuth’s algorithms or thibat were computed in the course of the algorithm, resulting in a word
algorithms in [1] and [8]. z' € §(2m + O(logm), 3). The concatenation aof andz’, in turn,

Efficient coding algorithms for the second-order spectral-null caséll form the output third-order spectral-null word.
were presented in [5] and [7]. Those algorithms have redundancy ofThe algorithm makes use of the following index sets, all being
3log, n + O(loglog n) bits and time complexity which amounts tosubsets ofS = {—#,—h + 1,---,h — 1}:

O(n) additions ofO(log n)-bit integers. Enumerative coding already « gu, = {4,3277% U {¢;}27~, where

oo(z) = o1(z) = o2(z) = 0.

turns out to be impractical for this case [5]. The redundancy of i e o
S(n.2) is known 0 be2log, n + O(1) [7] ° ’ (drvery = { (10,275 2622, if-is even
A B2 : DT (=9 20 0/2 7 20 1/2) - if s odd,
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Step A: Initialization of z

Let (z)s\s, ¢ balanced y. Let (z)s, + 0.
Step B: Reduction of |o3(z)]

Step B1: Shift cyclically the entries of (z)s\s,, until the resulting z is such that |o2(z)| < h%. Let
jB be the smallest number of shifts applied until this condition is met.

Step B2: For decreasing values of i = 2m—8,2m—9,...,0, reduce the value of |o2(z)| by assigning
zTg, = —Te, = —1if 02(z) > 0 and z4, = —z,, = 1 otherwise.

i

Step B3: Let (z)s,, + the row in Table 1 that corresponds to |oa(z)]. If o2(z) > 0 then let
(Q)sna A _(Q)SB:; (i-e., negate (Q)Sna)‘

Step C: Reduction of |o;(z)]

Step C1: For increasing values of indexes j = 1,2,..., swap z; with z_; until |oy(z)| < 2(h-1),
and let jc denote the number of swaps made until this condition is met.

Step C2: For decreasing values of ¢ = m—2,m—3,...,0, reduce the value of |o1(z)| by assigning
Zoi = —%_gi = —1if 01(z) > 0 and z9: = —z_9: = 1 otherwise.

Step D: Recursive encoding

Apply Step A-C recursively to the binary representation of (jg, jc). Concatenate the resulting word,
', with z to generate the final output of the encoder.

Fig. 1. Third-order spectral-null encoder.

V(h?/2) 4+ 49, and 1> is the largest odd integer if that is Proof: Let ') denote the value of at the beginning of Step
at mosth /2. We remove{d;, e;} from Sp. if d; < —h. Bl and let
e Sz =1{0,-3,3,-5,5,6,—-7,-9,9,10,-11,12,—13,14}. 2 = (J'fzszf2z+17 . '-ivgf_)1>

« So = {£277%

We will assume hereafter thatis large enough, in which case thebe the word obtained from'® by s right cyclic shifts of(z(”) s\ 5,
setsSuy, Sus, andSc are pairwise disjoint.We let.S, be the union (note that(z(*))s, remains zero for alk).
Sg2 U Sgs U Sc. Note that First, we show that

DN (O] < op?
[So| < 2(2m —7) + 14+ 2(m — 1) = 6m — 2. [o2(2"*) = oa(a")] < 2R

for everys > 0. We say that locatioyi in z*) contains asign change

For a wordz of lengthn and a subset” of 5, we will use the jf ;) £ .0+1) et j) < j, < --- < j, be the locations of the sign

notation (z)y for the subword of: that is indexed by’ ‘ "

The algorithm is summarized in Fig. 1. The inputs of length
|S\So| > 2h — 6m + 2. -

changes in:*). It is easy to verify that

3
2y (=157
=1

Let » be the smallest index such thatj; > 0. Define

|oa(2FY) — 0o (2!)] =

®)

IIl. ANALYSIS OF THE ALGORITHM

r—1
A. Validity B = Z(_l)i 2
We verify step by step that the algorithm indeed terminates with i=1
a third-order spectral-null word. and
Step A ends with a word: with oo(2) = 0. We turn to Step B o ¢ 1. 2
and first verify that the shift countgis is well-defined. pr = Z(_ i

Lemma 3.1: There is always a cyclic shift gfr)s\s, in Step B1

for which |ea(z)| < 5. Now, 3~ is a sum of integers with alternating signs and decreasing

absolute values, where the first integer in the sum (if any) is negative.
Hence
1This can happen only foi = 2m — 10,2m — 11. Nevertheless, 9 - -
in those cases where onl{ds,,_10,e2m_10} can be removed, then - <—ji <0 <0. (4)
{d2m—9,e2m—9} is redundant as well. In fact, it turns out that we will ) ) _ _ _
need all the2(2m — 7) elements ofSg., only whent is close in value to a On the other hand3* is a sum of integers with alternating signs
power of2. and increasing absolute values. Furthermore, siriseeven, the last
2As we show in the example of Section IV and as pointed out in thiteger in the sum is positive. Hence
previous footnote, some elementsSig> may sometimes be excluded. This R R
allows to have as small asis. 0< AT <ji <(h—1)7> (5)
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TABLE |
GENERATING ODD INTEGERS UP TO63 BY BALANCED ASSIGNMENTS
[oo(z)[\index | 0 [ -3 ] 3 [ -5] 5 [ 6 [ -7]~-9] 9 J[10o[-11]12]-13] 14
1 + 1+ -T-71+T7T-71T+]-7-7+7]7-T1T+7] -1+
3 + ]+ |-+ ]+ - -] -] -+ -1 -1+]+
5 -+ - -] -1+ + |+ ]+ - -] +]|-
7 -l -] -+ |+ -+ |+ |+ - +]|+]|-1-
9 + |-t -| -]+ |+ |+ -] -1+ +]|-]-1H%+
11 + |+ -1+ - -1 -1+ -1+ -1+]+]-
13 + |+t -] -1+|-1+-+}-1-1-|+1+
15 -l -t -+ + |-+ +|+]+]-1-|+]-
17 + -t -1-1t-1+1+|+]| -1+ +]+]-1]-
19 -l - -1+ +|+1 -]+ -+ ++]|-]-
21 + |+ --1-{-t+1+1+|-1-1+]+]-
23 + 1+ -] -1 -1+ +]|=-]=-|+]-1+]-1H+
25 + |+ |- -+ +}-1-1-1+!-1-1+1]+
27 + |+l -] -] -1 -t =]+ +|+1+]+]-]-
29 -l -1 -+ -1+|+{+|+ |-+ +|-]-
31 -l -l -1 +|+|+|-1+|+|-=-|+11-|+1]-
33 + - =-{+ |+ |-+ -|-1+|-|+]-1+
35 + |+ - -1-1+|+]|-|+1-|-|-1+1+
37 -+ -f{+ ]+ |+ |-+ -]-1-1+1+
39 -+ - +1+]| -1+ --1-1|+]|+7]+]-
41 + |+ -1-1-1+|-1-1+|+|+|-1-1+
43 + |+t - -1+ -+ -|-|-|++1-1+
45 + |+ -+ +|-|-|-{-1-1+|-1+1+
47 -+ -] -] -]+ + |+ ]|+ -] +]|-1+7]-
49 + - -+ +!+1-|-1-1-1+|+]-1+
51 + 1+ -] -1+ -1+ -1-1+|-|-1+1++
53 + - -1+ -1-t+1+|+1-=-|-|+1]+]-
55 + - -] -+ +|+| -7 -1+ -|+1]-1+
57 + | -1 - +f{+ |+ |- =-}t-1+|=-|-1+1+
59 + |- -|+{-|-|-|+[+|+]+|+]|-]|-
61 + -1 - -1+|-|+|+|+|-1+]-1]-1]+
63 - |+ i-1+i+]l-1+1l=-1+1-1=-1-1+1+
Combining (3)—(5), we obtain Lemma 3.2: The value ofs.(x) after Step B2 is an odd integer
(s4+1) () - 9 between—63 and 63.
loa (@) —oa(@™)| = 2|57 + 57| <207 (6) Proof: First note that
Next, we observe that . . . .
o 2(df_1 —6,;_1) > d? — ¢, i=2m—8,2m—9,---,1 (7)
[5\So|—1
> ) =0 . ‘ ‘ N .
o and2(d3,,_s — e3,,_s) > h*. Specifically, for the values in (2) we
haved? — ¢? = 27 for i < 2m — 10, and a simple check reveals
Indeed, sincex* is balanced, it follows that that (7) holds also foi € 2m — 8,2m — 9 (if di_y < —h, then
1S\S0|—1 {di—1,e; 1} is removed fromSg.; nevertheless, it can be verified
Z Iﬁ) -0 that (7) still holds if we replacéd;_,e;—1) by the pair(d,,e,) of
= elements inSi-> with the largest index < ). It follows that after
. iterationi in Step B2, the resulting absolute valueref =) is bounded
for every j € 5. Hence from above byd? — ¢7. In particular, fori = 0, the value ofrs(z)
[S\So|—1 |5\ So|—1 is an integer betweer64 and 64. Furthermore, at this stage, the
S em)y= > >0 ) only zero entries of: are those that are indexed ;s U Sc. Since
s=0 5=0  jES S\(Sms U Sc) contains an odd number of odd indexes, it follows
[S\So|—1 thato»(x) must be odd. O
= Zf . Z w(’,s) =0. The final reduction ofjs2(2)| to zero is done is Step B3, using
jes s=0 Table I. It can be readily checked that fore= 1, 3, - - -, 63, the values
heref here is & * i val ¢ hich in row = in the table contribute to o2(x) (we negate those values
Therefore, there is a *zero-crossing” valueofor whic in Step B3 if the contribution needs to ber). Note that neither of
ao(2) - aa(20FY) < 0. the changes made in Step B affects the valueifc), which still
remains zero.
By (6), for such ans we must have eithefos(2(*))| < h? or We now turn to Step C. This step is very similar to “Phase A” of
loa (zCFD)| < B2, O the second-order spectral-null encoder in [5, Sec. 1V]). We show next

Each iteration in Step B2 changes the value gfz) by an additive that the swap countejc: is well-defined.

term=(d? — e?), where the negative sign is chosen whefiz) > 0. Lemma 3.3: There is always a word obtained by less than
This further reduces the absolute valuesefz) as follows. swaps in Step C1 for whiclri(z)| < 2(h — 1).
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Proof: Let 2! denote the value af at the beginning of Step B. Redundancy

C1 and letzl! be the word after thgth swap. First, it is easy to

check that
|(T1 (ﬁ[j+l])

— o (@) < 4h - 1)

for all j > 0. Suppose we continue the swaps upiti: » — 1, and

let 2"l be the word obtained from!"~!! by negating the first entry

(indexed by—*h). In that case we will have

|01(£[h]) — Jl(g[hfl]ﬂ =2h

and
Ul(ﬁ[h]) — —Ul( [0 ])

Hence, there must be a “zero-crossing” indgx< h for which
o1(z) - o1 (V) < 0. For such a we must have either
o1 (2] < 2(h = 1)
or
oy (2P < 2(h = 1).

Furthermore, if the zero-crossing indexjis= h — 1, we have

oy (2"~ < h
or
|‘71(£[h])| = |01(£[U])| < h. O

Turning to Step C2, it can be easily verified that after iteration
in that step, the resulting value pf ()| is bounded from above by
2'*' In particular, fori = 0, the value ofr () is an integer between

We now compute the redundancy of the code which is defined by
the words generated by the algorithm for any given length.

Using the algorithms in [1], [3], or [8], the redundancy in Step A
due to the balancing of is at mostm bits.

Steps B and C requirgs,| < 6m — 2 bits to reducdoss(z)| and
|o1(z)| to zero. We also need: bits to represent the shift counter
js andm — 1 bits to represent the swap counter.

In Step D, the encoding procedure is applied recursively to the
2m — 1 bits that representjs, jc), thus generating a word' €
S(m',3) of lengthm’ = 2m + O(log m). Sincem = [log, n],
it follows that the total redundancy of the encoding scheme is
9log, n + O(loglog n) bits. This expression will be an upper bound
on the redundancy also if we replaeéby the overall lengthy +m/,
of the output word.

C. Time and Space Complexity

Step A can be implemented ly(») increments/decrements of a
[log, n]-bit counter, and a lookup table of sifkg, n]* bits.

As for Step B, we need to have the valuesef ) for each cyclic
shift in Step B1. Assuming that the squares of the elements between
1 and . are precomputed in a table, the initial value of(z) in
this step can be found iW(n) additions of O(log n)-bit integers.
Now, let# denote the word obtained fromby one right cyclic shift
of {x)s\s,, and letz be the word obtained from: by one right
cyclic shift of thewholeword . We describe next how, () can be
computed efficiently frono.(2), { = 1, 2. Step B1 will then proceed
iteratively by makingz the new value of:.

Noting thateo(z) = 0, it is easy to verify that

—2h-2 and o2(E) = o2(x) + 201 ().

01 (%) = 01(z)

—2 and?2. The following lemma implies that, (x) is actually zero Therefore, once we have,(z) and o (z), it is straightforward to

at this point.

Lemma 3.4: For n divisible by 4 and everyw € F"
1 (w) = o2(w) (mod 4).

Proof: Letn = 2h and writew = (w_p, W_p41," -
Then

L Wp—1)-

h—1
or(w)—o1(w)= Z J-) - w;
j=—h
(h/2)1
= > (@D)Q21=1) - wa+(2A+1)(2) - wary1)
l=—h/2
(h/2)1

= Z (2n((21-1

l=—h/2

) wor+ (214 1) - waryr).

The result follows by observing th@®l)((2! — 1) - wa; + (20 + 1) -
wg41) IS divisible by 4 for everyl. O

Neither of the changes made in Step C affects the values (af)

or o2 (2), which still remain zero. Hence, at the end of Step C we will

havesi(2z) = 0(mod4). And since—2 < o(2) < 2, it follows
that o((z) is zero.

computeos () and o2(z).

Let S: denote the set of all indexgse So such that —1 € S\So
(whenj = —h, the indexj — 1 should readh — 1). For an index
j € Si, let 7 denote the smallest index ifi\:So that is larger than
j (if no such index exists, thepis defined as the smallest index in

S\Sp). Forl = 1,2, define
az) =Y (G =) aa
JES

It can be readily verified that

oe(®) = 00(Z) + ove(z), t=1,2.
The expressions(z) can be computed usin@(logn) additions
of O(logn)-bit integers. The following discussion outlines how the
computation ofoe(x) can be accelerated further through the use of
small lookup tables.

Let S1 = USi(t) be a partition ofS; into O(1) subsetsS: (¢),
each of size less tham. For each subsef; (¢), construct a lookup
table for computing the expression

ae((@sy,) = Y, (G =i wio
JESL(E)

as a function of the entries;_,j € Si(#). Each lookup table
consists of less than entries and each entry contains @flog n)-

Finally, Step D is rather straightforward and is based on the fdgit integer. Note that these lookup tables can be computed in time
that the concatenation of twith-order spectral-null words yields aO(n) and that they depend am, but not on the encoded word. In

kth-order spectral-null word.

Decoding ofy is done by first reconstructing the valugsandjc
from z'. v
values ofz at the beginning of Steps C and B (in that order).

order to access the bits_1, j € S (), within (z) s\ 5, , We will use
|S1(¢)| pointers (counters) that will be decremented after each shift.

Once we have those two counters, we can reconstruct tfie hardware implementations, we can instead s{oje s, in a shift

register.) Once we have computed thel ) expressionse ({z)s, 1)),
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—— et —— =ttt At — =+ —+——+ (8)

e f—0——0404040000000000000000000000000 40 —0 40 — 4+ 4 — — ++—+— — 9)
4= —0—4040—0—0000000000000000000000000 —0 +0 +0 ++ — + — + 4+ — — + +— (10)
44— -0 —40 —0 4000 —000000000000 —000 —0 +0 +0 ++ —+ — + ++— — + +— (11)
o 0 — 00— — 40005004+ 04— — O— 4 — A FFOF b —d—FfF—— . (12)
bbbt — Ottt —+ =0 —+ 0400400 — O+ —— 0=+ ———+ — Ot + —+—+++——++—  (13)

b oo m bttt bbb b mm— b b — o —d—fm——ft—— b —t—+ ++— — +4— (14)

we obtaina.(x) as their sum. Note that this computation®f(z) and when applying the cyclic shifts in Step B1 we produce words
allows us to findjs without actually shifting(z)s\s,. This makes 2z with oo(2) = —1853,-1755,—-1357, and—625. The last
the computation efficient also in software implementations. value corresponds to (10) which is the first word in this step with

Steps B2, B3, and C are rather straightforward and can be imple=(z)| < »* = 900; so, js = 4. The assignment of values to the
mented usingD(n) integer additions. Hence, the overall time andntries indexed bygr: in Step B2 results in (11) withr () = 47.
space complexity of our encoding algorithm is as follows: In Step B3, we fill in the entries indexed ki; with the negated
entries of the row that corresponds4din Table I. This produces the
word (12). Step C1 starts with, () = 174 and then continues with
e O(n) accesses to)(1) tables, each of size n, and — iterated swaps that generate wordswith o () = 194,194,182

(nine iterations),134, 82,82, and 22. The last value corresponds
e O(n) increments/decrements of)(logn) counters, each o (13) and this word is the first to occur in this step with
[log, ] bits long. loy(z)| < 2(h — 1) = 38, and sojc = 15. Step C2 fills in the
entries indexed bySc to produce the word (14) for which we
haveao(z) = o1(z) = g2(z) = 0.

We consider here the case= 60 (for such a small value of the Note that we can make the counting of the swaps in Step C more
redundancy is relatively big, so this example is given only for theconomical by skipping index paifs-j, j) with z—; = z; (in which
purpose of illustrating the encoding steps). In this case 30 and case the swaps become in effect negations_of andz; whenever
m = 6, and the setSs: is given by T_; # x;).

S = {—10, 18, =20, =23} U {6, —14, 12,7} .Finally, the counter$jB,J.'c) are co.ded. inoupt@-6—1=11
bits and undergo a recursive encoding in Step D.

e O(n) additions ofO(log n)-bit integers,

IV. EXAMPLE

wherer; = 23. Note that we have excluded the elemefts, es } =

{7, m2} = {23,15} from Si2 since they will not be required in Step ACKNOWLEDGMENT
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Sks is of sizel4 and Sc is given by{+2'}i,. Hence,|So| = 32. and suggestions.
Suppose that the input balanced wgrdf lengthn —|So| = 28 is

given by (8) at the top of the page. After embedding = in Step

A, we obtain the word (9) (the arrow points at the entry indexed1] s. Al-Bassam and B. Bose, “On balanced cod¢&EE Trans. Inform.
by 0). For this word we havero(z) = 0 and o2(z) = —2047, Theory vol. 36, pp. 406408, 1990.
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where a € [—3,3) is the shift factor,q the quantization step,

Abstract—This correspondence addresses the problem of exact recoveryand n € Z which is the set of integers, we showed that k-
of higher order moments of ungquantized signals from those of their quan- ; N P ;
tized counterparts, in the context of nonsubtractive dithered quantization. order quamlzid momenty, = E[AQ] Is related to the unquantized
It introduces a new statistical characterization of the dithered quantizer moments,u,, = E[X"], 0 < r < p by
in the form of a pth-order moment-sense input/ouput functionn,, ().
A class of signals for which the solution to the exact moment recovery pQ, = A, + B, 2)
problem is guaranteed is defined, and some of its key properties are
stated and proved. Two approaches to this problem are discussed and where A, and B, are called the principal (or wanted) term and the

the practical gains accruing from the 1-bit implementation of the second  hjas (or unwanted) term, respectively, and are given by
approach are highlighted. Finally, a fruitful extension of this work to the

exact recovery of cumulants is briefly pointed out. 1 L p—r
A p+1 (4 m
A= Zc &) wperer @3)
I. INTRODUCTION IR (p—1)—r
Statistical moments are useful in a variety of scientific and engi- B, = Z ei2man Z (2)"_"ff Z
neering fields, as witnessed by the wide applicability of correlation R0 =0 =0
functions [1], and by the increasing volume of research into the study plir—! PETEN ([ 2T
and application of higher order moments, cumulants and higher-order : A =7 — M) (nm) Vv <7q ) 4)

spectra in various areas (see [2] and [3] for two large bibliographies

on these and other applications). The key motivation behind usindjere
cumulants (which are basically linear combinations of higher order 1 p+1
moments) and higher order statistics is that these tend to contain ot = < - ) =@+DYrip+1-1)!

more information (e.g., phase) about the signal under study, and also

offer processing domains of higher signal-to-noise ratios (SNR’s) thadAd @ denotes modul@- addition.

their second-order counterparts. The increase in SNR is only trudn an attempt to automatically canc8l,, which depends on the
though whenever the contaminating signals are Gaussian, since tBéferally unknown unquantized characteristic functidii«), the
cumulants (order greater tha) and higher order statistics vanish.following theorem (which is an extension of its original counterpart
Other motivating reasons for using higher order statistics can B&en in [4]) was derived.

found in [3]. In practice and for well-known reasons, moments are ;anaralized Quantizing Theoren®iven a general uniform quan-
computed digitally and this involves an amplitude information Iost?zer with shift factora, input X, stepg, and outputXo, if
that increases with decreasing quantization resolution. It is therefore, e jnnyt charateristic fur{ctiom"(,u) is bandlimited. i.e
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