
846 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Efficient Encoding Algorithm for Third-Order
Spectral-Null Codes

Vitaly Skachek, Tuvi Etzion,Member, IEEE,
and Ron M. Roth,Senior Member, IEEE

Abstract—An efficient algorithm is presented for encoding uncon-
strained information sequences into a third-order spectral-null code of
length n and redundancy 9 log

2
n + O(log logn). The encoding can

be implemented usingO(n) integer additions and O(n logn) counter
increments.

Index Terms—DC-free codes, spectral-null codes.

I. INTRODUCTION

Let F be the bipolar alphabetf+1;�1g. A word

x = (x1; x2; � � � ; xn)

in Fn is a kth-order spectral-null word(at zero frequency) if the
respective real polynomialx1z + x2z

2 + � � �+ xnz
n is divisible by

(z�1)k. We denote byS(n; k) the set of allkth-order spectral-null
words inFn. Any subsetC of S(n; k) is called akth-order spectral-
null codeof lengthn. The concatenation of anyl words inC yields a
word in S(nl; k); so, spectral-null codes can be used as block codes
with a redundancyof n � log

2
jCj bits (per block of lengthn).

The setS(n; k) is equivalently characterized by

S(n; k) = x 2 F
n :

n

j=1

(j + c)`xj = 0; ` = 0; 1; . . . ; k�1

(1)

wherec is any real constant (see [5], and [6, Ch. 9]).
First-order spectral-null codes are also known by the namesbal-

anced codes, zero-disparity codes, or DC-free codes. There are known
efficient encoding algorithms for these codes due to Knuth [3],
Al-Bassam and Bose [1], and Tallini, Capocelli, and Bose [8].
Those algorithms result in codes with redundancy at mostdlog

2
ne,

where n is the code length. By “efficient” we refer to the time
and space complexity of the encoding; for example, in one of
Knuth’s algorithms, the complexity amounts to a lookup table of
dlog

2
ne2 bits andO(n) increments/decrements of adlog

2
ne-bit

counter (as shown in [3], the space requirement can be eliminated by
increasing the redundancy tolog

2
n+O(log logn)). The redundancy

of S(n; 1) is 1

2
log

2
n+O(1), and such redundancy can be attained

by enumerative coding [6, p. 117]. In terms of complexity, however,
enumerative coding is less efficient than Knuth’s algorithms or the
algorithms in [1] and [8].

Efficient coding algorithms for the second-order spectral-null case
were presented in [5] and [7]. Those algorithms have redundancy of
3 log

2
n + O(log logn) bits and time complexity which amounts to

O(n) additions ofO(logn)-bit integers. Enumerative coding already
turns out to be impractical for this case [5]. The redundancy of
S(n; 2) is known to be2 log

2
n + O(1) [7].

Manuscript received February 22, 1997; revised September 22, 1997.
This work was supported under Grant 95-522 from the United-States–Israel
Binational Science Foundation (BSF), Jerusalem, Israel. The material in this
correspondence was presented at the IEEE International Information Theory
Workshop, Longyearbyen, Svalbard, Norway, July 1997.

The authors are with the Computer Science Department, Technion—Israel
Institute of Technology, Haifa 32000, Israel.

Publisher Item Identifier S 0018-9448(98)00980-8.

For higher ordersk of spectral null, Karabed and Siegel presented
in [2] a coding method based upon finite-state diagrams (see also
Monti and Pierobon [4]). However, since the rate of their construction
is strictly less than1, the resulting redundancy is linear in the code
lengthn. It follows that for any fixedk and sufficiently largen, this
redundancy is significantly larger than the upper boundO(2k � logn)

on the redundancy ofS(n; k); this bound is proved in [5] by
nonconstructive arguments. A recursive construction is presented
in [5] whose redundancy isO(n1��), where 0 < �k < 1 and
limk!1 �k = 0. Yet, this redundancy is still considerably larger
than the actual redundancy ofS(n; k).

In this correspondence, we present an efficient algorithm for en-
coding unconstrained sequences into a third-order spectral-null code
whose redundancy is logarithmic in the code length. More specifi-
cally, for code lengthn, the redundancy is9 log2 n+O(log logn) bits
and the encoding complexity isO(n) additions ofO(logn)-bit inte-
gers andO(n logn) increments/decrements ofdlog2 ne-bit counters.

II. A T HIRD-ORDER SPECTRAL-NULL ENCODER

It was shown in [5] that the lengthn of a third-order spectral-
null word is divisible by4, so we can writen = 2h for some even
integer h. We will use the definition ofS(2h; 3) that is obtained
from (1) by substitutingk = 3 and c = �h � 1. It will also be
convenient hereafter to index the entries of a real wordx of length
2h by (x�h; x�h+1; � � � ; xh�1). We define themomentsof such a
word x by

�`(x)
def
=

h�1

j=�h

j
` � xj ; ` = 0; 1; 2; � � � :

Clearly, a wordx 2 Fn is in S(2h; 3) if and only if

�0(x) = �1(x) = �2(x) = 0:

The following is an outline of our encoding algorithm. Letn = 2h

whereh is even and letm be the integerdlog2 ne = 1 + dlog2 he.
The input to the algorithm is a balanced wordy over F of length
2h � 6m + 2; namely,y is a word inS(2h � 6m + 2; 1) that
is generated from the raw data by any known DC-free encoder (e.g.,
[1], [3], or [8]). Our algorithm regardsy as a subword of a word
x of lengthn over F [f0g, where the remaining entries ofx are
initially set to zero; hence,�0(x) = 0. Next, the algorithm reduces
to zero the absolute values of�2(x) and �1(x) (in that order), by
a sequence of bit shifts and bit swaps, and by assigning values of
F to the zero entries ofx. At this point, x becomes a word in
S(2h; 3). The encoding ends by coding recursively certain counters
that were computed in the course of the algorithm, resulting in a word
x0 2 S(2m+O(logm); 3). The concatenation ofx andx0, in turn,
will form the output third-order spectral-null word.

The algorithm makes use of the following index sets, all being
subsets ofS = f�h;�h + 1; � � � ; h � 1g:

• SB2 = fdig
2m�8
i=0 [feig

2m�8
i=0 , where

(di; ei) =
(�10 � 2i=2;�6 � 2i=2); if i is even
(�9 � 2(i+1)=2;�7 � 2(i+1)=2); if i is odd,

0 � i � 2m� 10 (2)

(d2m�9; e2m�9) = (�1; �2)

and

(d2m�8; e2m�8) = (��1; 7)

where �1 is the smallest odd integer inS that is at least

0018–9448/98$10.00 1998 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998 847

Fig. 1. Third-order spectral-null encoder.

(h2=2) + 49, and �2 is the largest odd integer inS that is
at mosth=2. We removefdi; eig from SB2 if di < �h.1

• SB3 = f0;�3; 3;�5; 5; 6;�7;�9; 9; 10;�11; 12;�13; 14g.

• SC = f�2igm�2i=0 .

We will assume hereafter thath is large enough, in which case the
setsSB2, SB3, andSC are pairwise disjoint.2 We letS0 be the union
SB2 [SB3 [SC. Note that

jS0j � 2(2m� 7) + 14 + 2(m� 1) = 6m� 2:

For a wordx of lengthn and a subsetY of S, we will use the
notationhxiY for the subword ofx that is indexed byY .

The algorithm is summarized in Fig. 1. The inputy is of length
jSnS0j � 2h � 6m + 2.

III. A NALYSIS OF THE ALGORITHM

A. Validity

We verify step by step that the algorithm indeed terminates with
a third-order spectral-null word.

Step A ends with a wordx with �0(x) = 0. We turn to Step B
and first verify that the shift counterjB is well-defined.

Lemma 3.1: There is always a cyclic shift ofhxiSnS in Step B1
for which j�2(x)j � h2.

1This can happen only fori = 2m � 10; 2m � 11. Nevertheless,
in those cases where onlyfd2m�10; e2m�10g can be removed, then
fd2m�9; e2m�9g is redundant as well. In fact, it turns out that we will
need all the2(2m� 7) elements ofSB2 only whenh is close in value to a
power of2.

2As we show in the example of Section IV and as pointed out in the
previous footnote, some elements inSB2 may sometimes be excluded. This
allows to haveh as small as18.

Proof: Let x(0) denote the value ofx at the beginning of Step
B1 and let

x(s) = x
(s)
�h; x

(s)
�h+1; � � � ; x

(s)
h�1

be the word obtained fromx(0) by s right cyclic shifts ofhx(0)iSnS
(note thathx(s)iS remains zero for alls).

First, we show that

�2(x
(s+1))� �2(x

(s)) � 2h2

for everys � 0. We say that locationj in x(s) contains asign change
if x(s)j 6= x

(s+1)
j . Let j1 < j2 < � � � < jt be the locations of the sign

changes inx(s). It is easy to verify that

�2(x
(s+1))� �2(x

(s)) = 2

t

i=1

(�1)i � j2i : (3)

Let r be the smallest indexi such thatji � 0. Define

�� =

r�1

i=1

(�1)i � j2i

and

�+ =

t

i=r

(�1)i � j2i :

Now, �� is a sum of integers with alternating signs and decreasing
absolute values, where the first integer in the sum (if any) is negative.
Hence

�h2 � �j21 � �� � 0: (4)

On the other hand,�+ is a sum of integers with alternating signs
and increasing absolute values. Furthermore, sincet is even, the last
integer in the sum is positive. Hence

0 � �+ � j2t � (h� 1)2: (5)

848 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

TABLE I
GENERATING ODD INTEGERS UP TO63 BY BALANCED ASSIGNMENTS

Combining (3)–(5), we obtain

j�2(x
(s+1))� �2(x

(s))j = 2 � j�� + �
+j � 2h2: (6)

Next, we observe that

jSnS j�1

s=0

�2(x
(s)) = 0:

Indeed, sincex(0) is balanced, it follows that

jSnS j�1

s=0

x
(s)
j = 0

for every j 2 S. Hence

jSnS j�1

s=0

�2(x
(s)) =

jSnS j�1

s=0 j2S

j
2 � x

(s)
j

=
j2S

j
2 �

jSnS j�1

s=0

x
(s)
j = 0:

Therefore, there is a “zero-crossing” value ofs for which

�2(x
(s)) � �2(x

(s+1)) � 0:

By (6), for such ans we must have eitherj�2(x(s))j � h2 or
j�2(x

(s+1))j � h2.

Each iteration in Step B2 changes the value of�2(x) by an additive
term�(d2i �e2i), where the negative sign is chosen when�2(x) � 0.
This further reduces the absolute value of�2(x) as follows.

Lemma 3.2: The value of�2(x) after Step B2 is an odd integer
between�63 and 63.

Proof: First note that

2 d
2
i�1 � e

2
i�1 � d

2
i � e

2
i ; i = 2m� 8; 2m� 9; � � � ; 1 (7)

and2(d22m�8 � e22m�8) � h2. Specifically, for the values in (2) we
haved2i � e2i = 2i+6 for i � 2m� 10, and a simple check reveals
that (7) holds also fori 2 2m � 8; 2m � 9 (if di�1 < �h, then
fdi�1; ei�1g is removed fromSB2; nevertheless, it can be verified
that (7) still holds if we replace(di�1; ei�1) by the pair(dr; er) of
elements inSB2 with the largest indexr < i). It follows that after
iterationi in Step B2, the resulting absolute value of�2(x) is bounded
from above byd2i � e2i . In particular, fori = 0, the value of�2(x)
is an integer between�64 and 64. Furthermore, at this stage, the
only zero entries ofx are those that are indexed bySB3 [SC. Since
Sn(SB3 [SC) contains an odd number of odd indexes, it follows
that�2(x) must be odd.

The final reduction ofj�2(x)j to zero is done is Step B3, using
Table I. It can be readily checked that forr = 1; 3; � � � ; 63; the values
in row r in the table contributer to �2(x) (we negate those values
in Step B3 if the contribution needs to be�r). Note that neither of
the changes made in Step B affects the value of�0(x), which still
remains zero.

We now turn to Step C. This step is very similar to “Phase A” of
the second-order spectral-null encoder in [5, Sec. IV]). We show next
that the swap counterjC is well-defined.

Lemma 3.3: There is always a wordx obtained by less thanh
swaps in Step C1 for whichj�1(x)j � 2(h � 1).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998 849

Proof: Let x[0] denote the value ofx at the beginning of Step
C1 and letx[j] be the word after thejth swap. First, it is easy to
check that

j�1(x
[j+1])� �1(x

[j])j � 4(h� 1)

for all j � 0. Suppose we continue the swaps untilj = h � 1, and
let x[h] be the word obtained fromx[h�1] by negating the first entry
(indexed by�h). In that case we will have

j�1(x
[h])� �1(x

[h�1])j = 2h

and

�1(x
[h]) = ��1(x

[0]):

Hence, there must be a “zero-crossing” indexj < h for which
�1(x

[j]) � �1(x
[j+1]) � 0. For such aj we must have either

j�1(x
[j])j � 2(h� 1)

or

j�1(x
[j+1])j � 2(h� 1):

Furthermore, if the zero-crossing index isj = h� 1, we have

j�1(x
[h�1])j � h

or

j�1(x
[h])j = j�1(x

[0])j � h:

Turning to Step C2, it can be easily verified that after iterationi

in that step, the resulting value ofj�1(x)j is bounded from above by
2i+1. In particular, fori = 0, the value of�1(x) is an integer between
�2 and2. The following lemma implies that�1(x) is actually zero
at this point.

Lemma 3.4: For n divisible by 4 and everyw 2 Fn

�1(w) � �2(w) (mod4):

Proof: Let n = 2h and writew = (w
�h; w�h+1; � � � ; wh�1).

Then

�2(w)��1(w)=

h�1

j=�h

j(j�1) � wj

=

(h=2)�1

l=�h=2

((2l)(2l�1) � w2l+(2l+1)(2l) � w2l+1)

=

(h=2)�1

l=�h=2

(2l)((2l�1) � w2l+(2l+1) � w2l+1):

The result follows by observing that(2l)((2l� 1) � w2l + (2l+ 1) �
w2l+1) is divisible by4 for every l.

Neither of the changes made in Step C affects the values of�0(x)
or �2(x), which still remain zero. Hence, at the end of Step C we will
have�1(x) � 0 (mod4). And since�2 � �1(x) � 2, it follows
that �1(x) is zero.

Finally, Step D is rather straightforward and is based on the fact
that the concatenation of twokth-order spectral-null words yields a
kth-order spectral-null word.

Decoding ofy is done by first reconstructing the valuesjB andjC
from x0. Once we have those two counters, we can reconstruct the
values ofx at the beginning of Steps C and B (in that order).

B. Redundancy

We now compute the redundancy of the code which is defined by
the words generated by the algorithm for any given length.

Using the algorithms in [1], [3], or [8], the redundancy in Step A
due to the balancing ofy is at mostm bits.

Steps B and C requirejS0j � 6m� 2 bits to reducej�2(x)j and
j�1(x)j to zero. We also needm bits to represent the shift counter
jB andm � 1 bits to represent the swap counterjC.

In Step D, the encoding procedure is applied recursively to the
2m � 1 bits that represent(jB; jC), thus generating a wordx0 2
S(m0; 3) of length m0 = 2m + O(logm). Sincem = dlog2 ne,
it follows that the total redundancy of the encoding scheme is
9 log2 n+O(log logn) bits. This expression will be an upper bound
on the redundancy also if we replacen by the overall length,n+m0,
of the output word.

C. Time and Space Complexity

Step A can be implemented byO(n) increments/decrements of a
dlog2 ne-bit counter, and a lookup table of sizedlog2 ne

2 bits.
As for Step B, we need to have the value of�2(x) for each cyclic

shift in Step B1. Assuming that the squares of the elements between
1 and h are precomputed in a table, the initial value of�2(x) in
this step can be found inO(n) additions ofO(logn)-bit integers.
Now, let x̂ denote the word obtained fromx by one right cyclic shift
of hxiSnS , and let ~x be the word obtained fromx by one right
cyclic shift of thewholeword x. We describe next how�`(x̂) can be
computed efficiently from�`(x), ` = 1; 2. Step B1 will then proceed
iteratively by makingx̂ the new value ofx.

Noting that�0(x) = 0, it is easy to verify that

�1(~x) = �1(x)� 2h � xh�1 and �2(~x) = �2(x) + 2�1(x):

Therefore, once we have�1(x) and �2(x), it is straightforward to
compute�1(~x) and �2(~x).

Let S1 denote the set of all indexesj 2 S0 such thatj�1 2 SnS0
(when j = �h, the indexj � 1 should readh � 1). For an index
j 2 S1, let |̂ denote the smallest index inSnS0 that is larger than
j (if no such index exists, then̂| is defined as the smallest index in
SnS0). For ` = 1; 2, define

�`(x) =
j2S

(|̂` � j
`) � xj�1:

It can be readily verified that

�`(x̂) = �`(~x) + �`(x); ` = 1; 2:

The expressions�`(x) can be computed usingO(logn) additions
of O(logn)-bit integers. The following discussion outlines how the
computation of�`(x) can be accelerated further through the use of
small lookup tables.

Let S1 = [tS1(t) be a partition ofS1 into O(1) subsetsS1(t),
each of size less thanm. For each subsetS1(t), construct a lookup
table for computing the expression

�`(hxiS (t)) =
j2S (t)

(|̂` � j
`) � xj�1

as a function of the entriesxj�1; j 2 S1(t). Each lookup table
consists of less thann entries and each entry contains anO(logn)-
bit integer. Note that these lookup tables can be computed in time
O(n) and that they depend onn, but not on the encoded word. In
order to access the bitsxj�1; j 2 S1(t), within hxiSnS , we will use
jS1(t)j pointers (counters) that will be decremented after each shift.
(In hardware implementations, we can instead storehxiSnS in a shift
register.) Once we have computed theO(1) expressions�`(hxiS (t)),

850 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

(8)

(9)

(10)

(11)

(12)

(13)

(14)

we obtain�`(x) as their sum. Note that this computation of�2(x)

allows us to findjB without actually shiftinghxiSnS . This makes
the computation efficient also in software implementations.

Steps B2, B3, and C are rather straightforward and can be imple-
mented usingO(n) integer additions. Hence, the overall time and
space complexity of our encoding algorithm is as follows:

� O(n) additions ofO(logn)-bit integers,

� O(n) accesses toO(1) tables, each of size<n, and —

� O(n) increments/decrements ofO(logn) counters, each
dlog

2
ne bits long.

IV. EXAMPLE

We consider here the casen = 60 (for such a small value ofn the
redundancy is relatively big, so this example is given only for the
purpose of illustrating the encoding steps). In this caseh = 30 and
m = 6, and the setSB2 is given by

SB2 = f�10;�18;�20;�23g [f�6;�14;�12; 7g

where�1 = 23. Note that we have excluded the elementsfd3; e3g =

f�1; �2g = f23;15g from SB2 since they will not be required in Step
B2: The value ofd22 � e22 = (�20)2 � (�12)2 = 256 is already
greater than half the value ofd24�e24 = (�23)2�72 = 480. The set
SB3 is of size14 andSC is given byf�2ig4i=0. Hence,jS0j = 32.

Suppose that the input balanced wordy of lengthn�jS0j = 28 is
given by (8) at the top of the page. After embeddingy in x in Step
A, we obtain the word (9) (the arrow points at the entry indexed
by 0). For this word we have�0(x) = 0 and �2(x) = �2047,

and when applying the cyclic shifts in Step B1 we produce words
x with �2(x) = �1853;�1755;�1357, and�625. The last
value corresponds to (10) which is the first word in this step with
j�2(x)j � h2 = 900; so, jB = 4. The assignment of values to the
entries indexed bySB2 in Step B2 results in (11) with�2(x) = 47.
In Step B3, we fill in the entries indexed bySB3 with the negated
entries of the row that corresponds to47 in Table I. This produces the
word (12). Step C1 starts with�1(x) = 174 and then continues with
iterated swaps that generate wordsx with �1(x) = 194;194; 182
(nine iterations),134; 82; 82; and 22. The last value corresponds
to (13) and this word is the first to occur in this step with
j�1(x)j � 2(h � 1) = 58, and sojC = 15. Step C2 fills in the
entries indexed bySC to produce the word (14) for which we
have�0(x) = �1(x) = �2(x) = 0.

Note that we can make the counting of the swaps in Step C more
economical by skipping index pairs(�j; j) with x�j = xj (in which
case the swaps become in effect negations ofx�j andxj whenever
x�j 6= xj).

Finally, the counters(jB; jC) are coded into up to2 � 6� 1 = 11
bits and undergo a recursive encoding in Step D.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their helpful comments
and suggestions.

REFERENCES

[1] S. Al-Bassam and B. Bose, “On balanced codes,”IEEE Trans. Inform.
Theory, vol. 36, pp. 406–408, 1990.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998 851

[2] R. Karabed and P. H. Siegel, “Matched spectral-null codes for partial-
response channels,”IEEE Trans. Inform. Theory, vol. 37, pp. 818–855,
1991.

[3] D. E. Knuth, “Efficient balanced codes,”IEEE Trans. Inform. Theory,
vol. IT-32, pp. 51–53, 1986.

[4] C. M. Monti and G. L. Pierobon, “Codes with a multiple spectral null
at zero frequency,”IEEE Trans. Inform. Theory, vol. 35, pp. 463–472,
1989.

[5] R. M. Roth, P. H. Siegel, and A. Vardy, “High-order spectral-null codes:
Constructions and bounds,”IEEE Trans. Inform. Theory, vol. 40, pp.
1826–1840, 1994.

[6] K. A. Schouhamer Immink,Coding Techniques for Digital Recorders.
London., U.K.: Prentice-Hall, 1991.

[7] L. G. Tallini, S. Al-Bassam, and B. Bose, “On efficient high-order
spectral-null codes,” inProc. IEEE Int. Symp. Information Theory
(Whistler, BC, Canada, 1995), p. 144.

[8] L. G. Tallini, R. M. Capocelli, and B. Bose, “Design of some new
balanced codes,”IEEE Trans. Inform. Theory, vol. 42, pp. 790–802,
1996.

Exact Recovery of Higher Order Moments

L. Cheded,Member, IEEE

Abstract—This correspondence addresses the problem of exact recovery
of higher order moments of unquantized signals from those of their quan-
tized counterparts, in the context of nonsubtractive dithered quantization.
It introduces a new statistical characterization of the dithered quantizer
in the form of a pth-order moment-sense input/ouput functionhp (x).
A class of signals for which the solution to the exact moment recovery
problem is guaranteed is defined, and some of its key properties are
stated and proved. Two approaches to this problem are discussed and
the practical gains accruing from the 1-bit implementation of the second
approach are highlighted. Finally, a fruitful extension of this work to the
exact recovery of cumulants is briefly pointed out.

I. INTRODUCTION

Statistical moments are useful in a variety of scientific and engi-
neering fields, as witnessed by the wide applicability of correlation
functions [1], and by the increasing volume of research into the study
and application of higher order moments, cumulants and higher-order
spectra in various areas (see [2] and [3] for two large bibliographies
on these and other applications). The key motivation behind using
cumulants (which are basically linear combinations of higher order
moments) and higher order statistics is that these tend to contain
more information (e.g., phase) about the signal under study, and also
offer processing domains of higher signal-to-noise ratios (SNR’s) than
their second-order counterparts. The increase in SNR is only true
though whenever the contaminating signals are Gaussian, since their
cumulants (order greater than2) and higher order statistics vanish.
Other motivating reasons for using higher order statistics can be
found in [3]. In practice and for well-known reasons, moments are
computed digitally and this involves an amplitude information loss
that increases with decreasing quantization resolution. It is therefore

Manuscript received December 7, 1995; revised June 1, 1997. This work
was supported by the King Fahd University of Petroleum and Minerals.

The author is with the Department of Systems Engineering, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Publisher Item Identifier S 0018-9448(98)01306-6.

of practical interest to seek a characterization of all those quantizer
inputs whose finite-order unquantized higher order moments can
be exactly recovered from their quantized brethren, regardless of
the quantization resolution used. This problem will henceforth be
referred to as the exact moment recovery problem. The objective of
this correspondence is to seek a solution to this problem which is
insensitive to the quantization-induced amplitude information loss,
regardless of how coarsely (or finely) coded the quantizer input is.
Our study of the exact moment recovery problem was inspired from
the classical work of Widrow [4] which, in turn, drew its inspiration
from the seminal work of Bennett [5]. The work in [4] popularized the
additive model of quantization, i.e.,XQ

�
= Q[X] = X + nQ, where

Q represents the classical (nonlinear) quantizer andX;XQ; andnQ
are the associated input, output, and quantization noise, respectively.
As shown in [5], this model holds well under the conditions of no
quantizer overload, fine quantization, and smooth input probability
density function,pX(x): In earlier work [6]–[8], we presented a
multidimensional framework for the study of the exact moment
recovery problem and used it to rediscover the arcsine (Van Vleck)
law. Also, based on the following parametrization of the whole class
of uniform quantizers:

X 7! XQ = Q[X] = (a+ n+ 1
2
)q

if (a+ n)q � x< (a+ n+ 1)q (1)

where a 2 [� 1
2
; 1
2
) is the shift factor,q the quantization step,

and n 2 Z which is the set of integers, we showed that thepth-
order quantized moment�Q

�
= E[Xp

Q] is related to the unquantized

moments,�r
�
= E[Xr]; 0 � r � p by

�Q = Ap +Bp (2)

whereAp andBp are called the principal (or wanted) term and the
bias (or unwanted) term, respectively, and are given by

Ap =
1

p+ 1

p

r=0

Cp+1
r

q

2

p�r

�r [p� r � 1] (3)

Bp =
n6=0

e�i2�an
p�1

r=0

q

2

p�r

i�r
(p�1)�r

�=0

�
p!i��1

r!(p� r � �)!

p� r � �

(n�)�+1
W (r) 2n�

q
(4)

where

Cp+1
r =

p+ 1

r
= (p+ 1)!=r!(p+ 1� r)!

and� denotes modulo-2 addition.
In an attempt to automatically cancelBp, which depends on the

generally unknown unquantized characteristic functionW (u), the
following theorem (which is an extension of its original counterpart
given in [4]) was derived.

Generalized Quantizing Theorem:Given a general uniform quan-
tizer with shift factora, inputX, stepq, and outputXQ, if

a) the input charateristic function,W (u), is bandlimited, i.e.,

W (u) = 0 for juj � umax (5)

b) the quantization fineness, defined byuQ
�
= 2�=q, satisfies

uQ � 2umax (6)

0018–9448/98$10.00 1998 IEEE

