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The Depth Distribution—A New Definition 1: The depth of a word of length=, depthic), is the
Characterization for Linear Codes smallest integef such thatD*c = [0"*]. If no such: exists, then
the depth ofc is defined to benr.
Tuvi Etzion, Member, IEEE As an immediate consequence of the definitions, we have that the

depth of a word: of lengthn is i if and only if D' 'c = [a" 1],
for a nonzero element € GF(q). It is also clear that the depth of
Abstract—We apply the well-known operator of sequences, the deriva- a word of lengthn is at mostn.
tive D, on codewords of linear codes. The depth of a codeword is the Definition 2: Given a codeC of lengthn, let D; be the number

smallest integer: such that D*c (the derivative applied : consecutive of codewords of deptti. The numbersDy, D;. - --, D, are called
times) is zero. We show that the depth distribution of the nonzero o : T
the depth distribution of”.

codewords of an[n, k] linear code consists of exactly nonzero values, and - o
its generator matrix can be constructed from anyk nonzero codewords ~ In this correspondence we show that the depth distribution is an

with distinct depths. Interesting properties of some linear codes, and a interesting parameter of linear codes. In Section Il we will show that
way to partition equivalent codes into depth-equivalence classes are alsothe nonzero codewords of eafh k] code have exactly: nonzero
discussed. values in their depth distribution. We also show that argpdewords

Index Terms—Depth, depth distribution, depth-equivalent, derivative, from distinct nonzero depths can be chosen as the rows of a generator
generator matrix, linear code. matrix for the code. In Section 11l we discuss the depth distribution of
some binary codes, self-dual codes, the Hamming code, the extended
Hamming code, and the first-order Reed—Muller code. Finally, we
show how the set of equivalent codes can be partitioned into depth-
equivalence classes.

. INTRODUCTION

LetW = wyw2ws - - - be aword (finite or infinite) over an alphabet
of sizeq. The derivativeof W is defined byws — wq, w3 — wq - - -
where the subtraction is done either in the additive grdypor in
GF(q) if ¢ is a power of a prime. The derivative was discussed by
various authors [6], [7], [9] and was especially used in connection 1l. ON THE DEPTH DISTRIBUTION OF A LINEAR CODE
with complexity of sequences [2]-[5]. All these papers are dealing
with the case where the sequences are ovefgRMoreover, except  The main result of this section is a proof that the depth distribution
for [2] and [4], in all these papers the sequences are ovef2GF of the nonzero codewords of dn., k] code consists of exactly

The case where the sequences are dggr ¢ a power of a prime nonzero values. This fact will enable us to obtain some interesting
was discussed in [1]. In this correspondence we will connect fegsults in this and the next section.

the first time between the derivatives of words and linear codes. AnLemma 1: If ¢, is a word of lengthn and depthi, andc; is a word
[n, k] code over GRq) is a linear subspace of dimensiérof words  of lengthn and deptly, j < i, thenc = ¢, +¢, is a word with depth.

of length » over GF(¢). An [n, k,d] code is an[n, k] code with Proof: Since i is of depthi, it follows that D'~ 'c, =
minimum Hamming distance. [a" 7], Sincecs is of depthj, j <1, it follows by definition that
Henceforth, all words will be finite and over a finite field = p*—1'¢, = [()"*iﬂ]_ Thus D" Y(cy + c2) = [a"*”rl], and hence
GF(g). For o € GF(g) let [«'] denote a word with consecutive we have that: = ¢ + ¢ has depth. O
appearances of (distinguished fromn" which is theith power of Lemma 2: If ¢, is a word of lengthn over GF(q) and « is a
). For a worde = (x1,2,---,2,) over GF(g) and an element nonzero element of Gfg) thenac; ande; have the same depth.
a € GF(q), we defineax = (awy, awy, - -+, ax,). We define two Proof: This is an immediate observation from the fact that by
operatorsk and G from F to F"~' as follows: definition of the derivative we havP (aci) = aDcy. |
The immediate consequence of Lemmas 1 and 2 is the following
E: (w20, wn) = (22,23, 20) corollary.
G (1,22, ,xn) — (T1,22,+, Tn_1). Corollary 1: If ¢1,¢2,---,cr are words of lengtle and distinct
depths theny, ¢z, - - -, ¢; are linearly independent.
The derivative D: F* — F"~! is defined adD = E - G, i.e., Lemma 3: Let ¢; and ¢ be two words of lengthe and depthi
over GF(q). If « is a primitive element in GFy) then there exists
D(zi, 22, -, an) = (22 — @1, 23 — 2, &n — Tn_1). an integerj,0 < j < ¢—2, such that; +a’ ¢, is of depthm, m < i.
S ) Proof: By the definition of the depthD'~"¢; = [T~ 1] for
Note, thatD is a linear operator, i.e., some nonzerad;, € GF(q) and D'~'c, = [37 "] for some

nonzero3; € GF(q). Let j: and j» be two integers such that

D(z +y) = D(x) + D(y) 0<ji, jo<q—20 = a’t,and -3 = o’2. Let j3 be an

and integer such that < js; < ¢ — 2 andjs = j; — j» (mod ¢ — 1).
D(az) =aDzx Sincea’3a’2 = o1, it follows that D'~ '(c1 4+ /3 ¢y) = [(]”7”1]
and hence:; 4+ o’3co has depth less thain O

for z,y € F" anda € F. Theorem 1: The depth distribution of the nonzero codewords of

an [n, k] linear code consists of exactly nonzero values.
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nonzero codewords;, ca, - -+, ¢;n, Where Case 2: depth (V) < 2"7'. Let
depth (¢, ) > depth (¢pe1) > +++ >depth (c2) > depth (c1). V= (01, 02,y By U7 413 U372, 3 D)
Let ¢ be a codeword inC'\ C with the smallest depth. Without = (X1, X2, X3, X4)

loss of generality we can assume thapth (¢) = depth (c;), for
somei,1 < i < m. If « is a primitive element in GFy) then whereX,,1 < i < 4, is a word of lengti2" L. Sincedepth (V) <
clearly, a’c; 4+ ¢ is a codeword inC'\ C forall 0 < 57 < ¢ — 2. o1t beIoT/vs that T
By Lemma 3 there exists an integer0 < » < ¢ — 2, such that '
depth (a"¢; + ¢) <depth (¢), a contradiction to the assumption
that ¢ is a codeword with the smallest depth @\ C,. Thus the
depth distribution of the nonzero codewords(bfconsists of exactly
k nonzero values.

An immediate consequence from Theorem 1 and Corollary 1 is

Corollary 2: Any %k codewords of afn, k] code over GFg) with
distinct nonzero depths can form a generator matrix of the code.

or—1 or—1

(E-@) v = (B -G v =07
and henceX; = X, X» = X3, and X5 = X4. Thusdepth (V) =
depth (V).

Thus by the recursive definition of the functid") in Algorithm
A we haved(V) = depth (V). O

If n = 2™ then Algorithm A for computing the depth coincides
with the Games and Chan algorithm [5] for finding the linear

[ll. M ORE PROPERTIES AND APPLICATIONS complexity of a cyclic sequence. Hence we have the following
corollary.

An important tool in the understanding of the properties of words Corollary 3:: If V is a binary word of lengtl" then its depth as
of certain depths, and for using the depth as a tool is an algoritttmoncyclic word is equal its linear complexity as a cyclic word.
for computing the depth of a word. We will give the algorithm for In all the following lemmas we consider only binary words and
words over GR2). This algorithm is a generalization of the algorithmcodes, unless stated otherwise. The first lemma characterizes some
of Games and Chan [5] for computing the linear complexity of ef the properties of words with lengt?* (cyclic or noncyclic) and
cyclic word of length2™. A generalization for GFy),¢ > 2, is quite certain depths. Some of these properties are well known [3] and all
simple and will follow the lines presented in [4]. The algorithm whictof them can be easily derived from Algorithm A for computing the

follows is presented in a recursive way. depth of a word or the Games and Chan algorithm [5].
Algorithm A: LetV = (v, v2,- -+, v, ) be abinary word of length  Lemma 4:: Let v be a word of lengt2™.
n and letr be the largest integer such thzt<n. Let 1) v has depth2” if and only if v has odd weight, where the
weight of a wordv is the number of nonzero entries in
V' = (01,02, -+, 02r) 2) v has depth2® + 1 if and only if v has the form
and (XXXX...XX), where X is a word of length2’,

and X is the binary complement aok. ‘
3) v has weight two only ifv has depthz?=! 2° = 27 — 2™,
for somem,0 < m < n — 1.

U =(vi+varg1,v2 4+ varga, -+, Upoor + vp).

We compute the functiod(V') recursively as follows:

If V= [0"] thend(V) = 0. Next, we intend to show a characterization of the depth distribution

If V = [1"] then d(V) - 1 for certain kinds of codes.

If U = [0""2] thend(V) = d(V"). Definition 3: If C is an [n, k] code over GFKq), its dual or

If U # [0"~2] thend(V) = 2" + d(U) orthogonal code”™ is the set of vectors which are orthogonal to all

Theorem 2:If V' = (v, vs.-++,v,) is @ binary word then in the codewords o€ If C = C'* thenC is called a se_lf-dual code.
Algorithm A we haved(V) = depth (V). In the next lemma we make use of Corollary 3, i.e., the fact that

Proof: If V = [0"] then obviouslydepth (V) = 0 and if the depth and the linear complexity of a binary word of length
V' = [1"] then obviouslydepth (V) = 1. Let r,U, and V' be coincide. First, we extend the definitions of the opera#Brand D.

defined as in the algorithm. We remind thipth (V) < » and FOr @ binary worde = (1,22, - -, w2n), the shift operator £ is
depth (V) = d if and only if E-G)*~" = [1"~"*']. Also note that defined by
over GR(2) we have(E — @) = E*" — G*" since ¢,)is Ex = (29,23, wn,11)

even forl < k < 2™ — 1. Therefore, clearlyiU # [()"*ZT] if and L )

only if depth (V) >2" and henceldepth (V) = 2" + depth (/). 2and the operatoD is defined by

U = [0""2"] if and only if depth (V) < 2". We distinguish between D=(E4+1)x=(zo+m1, 23+20, -, 2on +T9n 1,21+ 29m ).

two cases. ) ) ) o
Case 1: depth (V) > 271, Let The linear complexity of a binary word of length 2" is ¢ if

(E+1)"'e = [177].
Lemma 5: Let v be a nonzero word of lengtR” and depth
i ‘ i,1<i< 2" andu be a word of lengtR™ and deptt2" +1 —i.
= (X, X, X, X)), Thenw« and v are not orthogonal.

Proof: We will prove that for eacli, 1 < i < 2"~', each word
where X;,1 < i < 4, is a word of lengtt2” . SincelU = [0" 2]  of length2" and depthi is not orthogonal to any word of lengg
and by the definition o¥ ™ it follows that Xy = X3 and X2 = X4. and deptl2” 4 1 — i. The proof is by induction. The basis is= 1;
Hence the only word of depthl, is [12"], and by Lemma 4 1), a word of

(E - G)T‘IV* = (X1 — Xo. X2 — X3, X3 — X4) length2™ has depth2” if and only if it has odd weight. Hence, the
claim follows. Assume the claimistrue for1 <: < 2" '—1, i.e,,
= (- X0 - X X - X)) each word of lengtl2™ and depthi is not orthogonal to any word
and thusdepth (V) = depth (V'). of length2™ and depth2” + 1 —i. Let v = (vy,vz,---,v2n) be a

T* oy ,
V" = (01,02, , Uy Un—arg1, Un—grqa, -+, Var)
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word of length2™ and depthi 4+ 1, andu = (w1, u2,- -+, u2n) be a
word of length2™ and dept2” — i. By definition

Dv = (vi + vo,v2 + v3,+++, Van_1 + vVan, von + 1)

1363

a vectora and a permutatiom, such thatC> = {a +n(c): c € C1}.
Since we discuss linear codes, it follows that all equivalent codes
can be obtained by the! permutations on the: coordinates. If

r out of the n! permutations result in a code equal €& then

and by Lemma 4 1) we have thﬁlf-; u; is even, and hence therethere exist:!/r different linear codes equivalent @, . If we want

exist two wordsY andY such thatDY = DY = u, where

on om_ 1

Y = <Zu]',u1xu1 + Uz, ur + uz +usz, -, Z u]>

Jj=1 j=1
It is easy to see that
on

(Dv) - (EY) = (Dv) - (EY) = > vju;

j=1

depth (u) = depth (Eu) sinceu is of length2” and by Corollary

3 its depth is equal its linear complexity as a cyclic word. Sin

depth (u) = depth (Eu,), it follows that Dv andY are orthogonal

if and only if v andu are orthogonal. But, by the induction assumptio

we have thafDv andY” are not orthogonal (sincBv has depth and
Y has deptl2™ + 1 — i) and hence» andw« are not orthogonal.d
Corollary 4:: If {Di,,Di,,---,Di,, .} is the set of nonzero

values of the depth distribution of a self-dual binary code of Ieng%

2" then for any two integeyj andm,i; + i, # 2" + 1.

Corollary 5: In a self-dual code of length” we haveD, = 1
and for each,1 < i < 2" !, eitherD; = 0 and Dynyq_; # 0, or
D; 75 0 and D2n+171‘ = 0.

The first-order Reed—Muller code in 42", n + 1,2"7'] linear

further to partition thesen!/r codes into new equivalence classes,
one simple method is to use the depth distribution of the codes.
We will define two linear codes adepth-equivalentf they are
isomorphic and have the same depth distribution. This definition can
give us new interesting results. For example, there are exactly four
depth-equivalence classes for tf#e4, 4] extended Hamming code
which is also a self-dual code. The first class has depth distribution
Dy = 1,Dy = 1,D; = 2,D; = 4, and Ds = 8. The second
class has depth distributioby = 1, D; = 1,D; = 2, D5 = 4, and

D¢ = 8. The third class has depth distributiay, = 1,D; =
1,D;s = 2,D5; = 4, and D; = 8. The fourth class has depth

C((::fistribution Dy =1,D; = 1,D5 = 2,D¢ = 4, and D; = 8.
A/Ve do not know all the feasible depth distributions for fhé, 11, 4]

extended Hamming code, or any other interesting codes.

Roth [10] has observed that there are other possible alternate
definitions of “depth”. Leto be an element in Gfy). Let C' be
linear code over Gfy), ¢ = (co,c1,-++,cn—1) be a codeword in
,ande(x) = £7 ¢;2’ the polynomial associated with We say
that ¢ has “depth”i, if i is the smallest integer such that

(# — ) e(x) = 0(mod (x — a)™).

Similar results to the ones obtained in this correspondence can be

code. This code is unique, i.e, all linear codes with the sanebtained by using this definition for the “depth.” & = 1 andn

parameters are equivalent to the first-order Reed—Muller code.
Lemma 6: For any givem, any generator matrix with 4+ 1 rows,
where rowi, 1 < i < n, is any word of lengti2™ and depti2’ 41,
and rown+1 is the only word of lengtl2" and deptH., is a generator
matrix of the[2",n + 1,2" '] first-order Reed—Muller code.
Proof: By Corollary 1 all ther 4 1 rows are linearly indepen-
dent. By Theorem 1 the depths of the nonzero codeword$ ared

27 41,0 < j < n — 1. Therefore, by Lemma 4 2), the weights of

all codewords, which are ngh?"] and[12"] is 2" ~* and the lemma

follows. O
The Hamming code is the uniqy2™ — 1,2" — n — 1, 3] code.

The extended Hamming code is the unid2®, 2" — n — 1, 4] code.

is a power ofg then the depth of a codewordby both definitions

is the same. It is intriguing to find connections between these two
definitions, more connections between the linear complexity and the
depth of a word, to find the depth distribution of other interesting
codes, and more applications for the concept of depth associated
with linear codes.
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The code which is orthogonal to the extended Hamming code is tberrespondence.
first-order Reed—Muller code. For more information on these codes

the reader is referred to [8].

Lemma 7: For any givern, any generator matrix wit" —» — 1
rows which contains any word of leng2i’ and depth: for each
i1 <i<2"—1,i%#2"—2, foreachj, 0 < j < n-—1,
as a row, is a generator matrix of tfi@', 2" — n — 1, 4] extended
Hamming code.

Proof: Follows immediately by Lemmas 1 and 4 3).
Similarly to Lemma 7 we can obtain the following lemma.
Lemma 8: For any givem, any generator matrix witQ” —n — 1

rows which contains any word of leng#f — 1 and depth for each
i,1<i<2"—1,i#2"—27 foreachj, 0 < j <n—1,asarow,
is a generator matrix of thR" — 1,2" — n — 1, 3] Hamming code.

|

Proof: One can verify from the algorithm for computing the

depth of a word that a word of leng#f — 1 and weight either one
or two has deptt2" — 2’ for somej, 0 < j < n — 1. The lemma
follows now from Lemma 1. (I

Another application for the depth distribution is in partitioning and

classification of equivalent codes into disjoint classes.Lgthe the
set of all words of length. over GF(¢). Two codesCy,C> C Fy
are said to besomorphicif there exists a permutation, such that

C> = {7m(c): ¢ € C1}. They are said to bequivalentif there exists
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