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Inform. Theory vol. 38, pp. 1829-1833, Nov. 1992. di (d2), and the length of the longest run of consecutive zeroes
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1< d; <k, fori =1,2. In some literature, &1, k) code refers to a
set of sequences whose runlengths of consecutive zeroes are between
d and k inclusively. It is easy to verify that this is equivalent to
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Abstract—Runlength-limited sequences and arrays have found ap- (d.k) code is equivalent to a set @fl + 1,k + 1’f.l +1E+ 1)
plications in magnetic and optical recording. While the constrained S€JquUeNces. Adh_]‘“lad%I"Q;dSakSsd%kU array of sizen; x ns is
sequences are well studied, little is known about constrained arrays. In & binary array withn; rows andn. columns such that every row
this correspondence we consider the question of how to cascade two arraysis a (dy, k1, d=, k2) sequence and every column iSd, ks, da, ka)

with the same runlength constraints horizontally and vertically, in such  gequence. If the horizontal runlength constraints are the same as the
a way that the runlength constraints will not be violated. We consider . . .
vertical runlength constraints, i.el; = ds,d> = d4, k1 = k3, ks =

binary arrays in which the shortest run of a symbol in a row (column) e
is d1 (dy) and the longest run of a symbol in a row (column) isky (k2). k4, itis called a(dy, k1, d2, ko) array. If, furthermore, the runlength
We present three methods to cascade such arrays. iy > 4d; — 2 our  constraints on the zeroes and ones are the same in each dimension,
method is optimal, and if ki > d; 4+ 1 we give a method which has a je,  d, = d, andk, = k», then it is called &d1, k1) array. If only
certain optimal structure. Finally, we show how cascading can be applied e rnjength constraints on the zeroes and the ones are the same,
to obtain runlength-limited error-correcting array codes. . L
ie.,d = dz,kl = kz, ds = dq, and kz = ka4, then it is called a
Index Terms—Cascading, merging arrays, runlength-limited arrays, (dy, k13 ds, k3) array.
runlength-limited sequences. Definition 1: Assume we are given am X no (di, ki, da, ko;
dg, k3/ d4, k4) arrayX and amm, X n3 (dl, kl, dz, kz; dg, k3/ d4,
I. INTRODUCTION k4) arrayY . An ny x n4 array Z is called amerging arrayif X 7Y
is a ((]1 , ko s (]2, kz; ds, kg, fl4, L34> array.

Runlength-limited (RLL) codes are binary codes whose mini- . . . .
. . . In this correspondence we consider the following two questions.
mum and maximum runlengths of consecutive zeroes or ones in

its codewords are constrained. Such codes have found application®1) Given anu. x nz (di, ki, dz, kz; s, ks, da, ks) array X

in magnetic and optical recording, partial response channels, line and amn x ns (d1, k1, da, k23 ds, ks, da, ka) arrayy, does
coding, and bar codes [6], [7], [11]. The one-dimensional case of there exists am x n. merging arrayZ such thatX 7Y is

RLL sequences is well studied, while the two-dimensional case, a(dl’h’d?’kQ;d3’]"3’f14’k’1) array? _

which has horizontal and vertical constraints, has received attentiodQ2) If the answer to (Q1) is yes, we as,k how can we find such
from only a few authors such as Orcutt and Marcellin [9], [10] Z, and what is the narrowest merging array?

who studied multitrack or stacked RLL codes. Two-dimensional RLL (Q1) and (Q2) are questions on the horizontal cascading. We have
codes were considered by Etzion and Wei [5]. These arrays wiimilar questions and answers on the vertical cascading. Without loss
also be considered in this correspondence. We will study one @fgenerality we will only consider the horizontal cascading. The rest
the fundamental questions about RLL arrays: how to cascade t@lothis correspondence is devoted for answering these questions for
constrained arrays in such a way that the constraints of the runleng@ftain constraints. In Section Il we will give the main results on
will not be violated. This question is important in studying encoding:ascading constrained arrays, i.e., we will give some answers to (Q1)
decoding, and error correction of RLL arrays, and in studying ti&nd (Q2). In Section Il we will give some applications of cascading

Cascading Methods for Runlength-Limited Arrays

capacity rate of the corresponding channels. constrained arrays. The conclusion is given in Section IV.
The problem of cascading RLL sequences has been studied by
Tang and Bahl [12], Beenker and Immink [2], and Weber and Abdel- II. CASCADING CONSTRAINED ARRAYS
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vertical and the horizontal constraints, with a possible exception ofCorollary 1: If X is a valid(d:, ki;d2, k2) array thenXm is a
a run shorter thad, or d» as the rightmost run, is calledraerging valid (di, k1; d2, k2) array.
column Given a validny x ne (di,k1;ds, k2) array Xe, what is the

The answer for (Q1) is not always positive. Assume we havainimum number of columns that we have to cascade to the right of
the constraint1, 2, 1,2; ds, ks, d4, ka), ks < k4, andc is a column Xc in order that the resulting array will be R balanced? How many
which starts withks zeroes followed byk, ones, and letY = cc.  merging columns do we have to cascade to the righKefbefore
By the horizontal constraint the next (merging) column must staste can cascade any gived,. k2) RLL sequence: of lengthn,?
with k3 ones followed byk. zeroes, but this is impossible by theThere are a few simple cases.
vertical constraint on the zeroes. This is one of the reasons thaCase 1: If all the R runs inX ¢ are of length greater or equél
we will consider in this section onlyd, , k1; ds, ko) arrays. We will then by Lemma 2;i = . In this caseX ¢(¢)?* is R d; balanced. If
show that in this case the answer to our two questions is positivealf the runs are also less than then X ce is a valid (dy, k13 d2, k2)
dy = k1 ords = ko the solution is either trivial or can be transferredarray for any(d», k2) RLL sequence: of lengthn,.
to the one-dimensional case. Henceforth, we will asséime> d; In Cases 2 and 3 which follow, we assume that the shortest R run
and k2 > ds. in Xc is of length less thar;.

We will make the assumption that all the arrays in this section Case 2: If the shortest R run of a symbolts, the longest R run is
have width at leasf;, unless otherwise stated. Also, we will denotdz, andtz —t1 < ki —di, thenXc"' ="+ is a valid(d. k13 dz, k2)
arrays by upper case letters and columns by lower case letters. array andX ¢*~ 17! (¢)“t is an Rd, balancedd.. k1; 2. k=) array.

Definition 3: An R run (L run)in any row of an array is the If t2 — t1 < ki — di then for any(d:, k2) RLL sequencee,
rightmost (leftmost) run in the row. Xceh=tte is a valid (dy, ki; da, k2) array.

Definition 4: An array X is called avalid (d:, k1; dz, k2) array if Case 3: If the longest R run, which is less than, of a symbol is
it satisfies the(di, k1; d=, k2) constraint, with the possible exceptiont andd, +¢ < ki1, then inX criu the longest R run is+ 1. Therefore,

of R runs or L runs smaller thad, . Xe(m)®(m)™ is an Rd, balanced array. Ifl; +t < k, then for
Without loss of generality we can consider in (Q1) arrdysand ~ any (d, k2) sequence, X c(1i)™ e is a valid (d1, k1; d2, ko) array.
Y which are valid arrays. Lemma 3: If Xc is a valid (dy, ki;d2, k2) array, wherek; >

Definition 5: A valid (dy, ki;d2, k») array X is called R (L)d;  2d1 — 1, thenY = X¢(/n)™* is a valid (d1, k1; da, k=) array.
balancedif the last (first)d; columns ofX are equal and the column Proof: By Lemma 2,7 is a(d., k2) RLL sequence and hence
before (after) thesd, columns is the complement of each of thesd” has the vertical constraint. Singg has the complement of the
d, columns. entries ofc in all the rows in whichX ¢ has R runs of lengths greater

The importance of R (L)d: balanced arrays comes from theor equald; andk; > 2d; — 1, it follows that Xc(s)* does not
observation that if we have am; x n, R (L) d, balanced array have an R run of more thali, — 1 symbols, and hence it is a valid
X then for any(da, k2) RLL sequence: of lengthn,, as a column (d1,k1;d2, k2) array. o
vector, X ¢ (cX) is a valid(dy, ki ; do, k) array. For a binary value ~ Definition 8: Let X.Y, and XZ,Y" be valid (d1, k1;d2, k2) ar-

b, let b denote the binancomplemendf b. For a columne, let ¢ rays.Z: is called anoptimal merging arrayif there is no merging
denote the column obtained by complementing all the entries ofarray Z: of width less than the width of:, such thatY Z,Y is a
For a column, let ¢* denotet consecutive copies af For an array Valid (di. ki;d2, k2) array.

X, let X* denote thereverseof X, i.e., the columns ofY taken  Definition 9: A cascading method fofdy. ki:d2, k2) arrays is

from the last to the first. called optimal if
Definition 6: For a valid(d:, k1; d=, k2) array X ¢, wherec is the 1) Forany given validd,, k1; d2, k2) arraysX andY’, it produces

last column, thamerge one operatoresults in a columnin, which a merging arrayZ of width less than or equal t@ such that

is defined as the complement of the entryim all rows whereX ¢ XZY is avalid(di, ki;d2, k2) array.

has R runs of length greater than or equafitpand the same value 2) There exist two validd, ki;d2, k2) arraysX; andY; such

as inc in all rows whereXc¢ has R runs less thad, . that there is no merging arra, of width less thanw for
Definition 7: We defineX[1(s)] = X and if X[r(m)] = XY which X1 Z,Y) is a valid (d1, ki; ds, k2) array.

then X [(r +1)(s7)] = XYn, i.e.,[(r+1)(7i)] isr + 1 consecutive  Note that an optimal cascading method does not have to produce

applications of the merge one operator. optimal merging arrays in all cases.

It is important to understand that is dependent in thé; columns Corollary 2: If X is a valid (d1, k1;d=, k=) array, wherek; >
which are preceeding it. Note that(ri2)" is X followed byt identical 24, ande is any (d2, k2) RLL sequence: of lengthn, then there
columns which are equal te:, and usuallyX (/)" is different exists a merging arraf of width d;, such thatX Ze is a valid
from X[t(r2)].t > 2. X ()2 (1h)'2 is X followed byt, identical (dy,k;d, ko) array.
columns which are equal t& and¢. identical columns which are Proof: We generateX s and takeZ = ()% to obtain the
the complements of the previous columns. required merging array. a

In the results which follow we will give a partial answer to our Corollary 3: If X andY are valid(d:, ki; dz, k2) arrays, where
two questions. The first lemma is an immediate observation from > 4d; — 2, then there exists a merging arr&yof width 2d; such

Definition 6. that X 7Y is a valid (dq, k1; d, ko) array.

Lemma 1: If X is a valid (di,k:1;d2, k2) array thenXm is an Proof: Let i, be the resulting column from applying the merge
array with no R runs greater thah. one operator otX” and leti; be the resulting column from applying
Lemma 2: If XcY is a valid (di,k;d2, k2) array, where the the merge one operator di*. Now, takeZ = (vi1)7* (1h2)%* to

width of Y is d; — 1, thenm = ¢ in Xc¢Yrn. obtain the required merging array. (I

Proof: Since by Lemma 1, ifX ¢Y7i» we do not have an Rrun  The cascading method presented in Corollary 3ifoe> 4d; — 2
with more thand, symbols, and no runs in a row, with a possiblés optimal as proved in the following Lemma.
exception of the first or the last run, can have length less thait Lemma 4: For any given nonnegative integeds, k1, d., k2, such
follows thats% must be different in all the positions from the columrthat #; > 4d, — 2 and k2 > do, there exist valid(d, ki;d2, k2)
preceding it in exactlyl; positions horizontally, i.esn = ¢. O arrays X and Y, which do not have a merging array of
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width less than2d:, for which XY Z is a valid (d1, k1; ds, k2)

array. By Lemma 6, the R runs i@’ are of lengths between
Proof: We construct validdy, k1; d2, k») arraysX andY such

that in the first two rows ofX there are R runs of length; of a=s-+ 7{(11__51 _y

zeroes, and in the first (second) row¥fthere is an L run of length r

ki of zeroes (ones). But, if one columnis added, then because fy 7, Now, since0 < d, — a« < r it follows that we can apply
the horizontal constraint for the first row, at leakt columns are (d; — a)-balancing, and by Lemma 6. the new obtained aajs

needed, in the merging array, with ones in the first row. Because gf Rd, balanced and by Lemma 2 last column Gfis eitherc or
the horizontal constraint for the second ra; columns are needed ;. 0O

in the merging array. U Corollary 5: For a(dy,dy +r;ds, k2), 1 <r < d, —1arrayX,

times to obtain the array’ for which the last row is eithet or c.

Corollary 4: The cascading method of Corollary 3 is optimal.

Lemma 5: If X andY are valid(dy, k1; d2, ko) arraysky > 2dy,
then there exists a merging arrdyof width 4d; such thatX ZY is
a valid (di1, k1; d2, k=) array.

Proof: Letm be the resulting column from applying the merge
one operator oX and letin, be the resulting column from applying

the merge one operator di®. Now, take
Z = (1) (51 ) L (112) T (g )1

to obtain the required merging array.
In Corollary 3, we have answered (Q1) féf > 4d; — 2. In
Lemma 5, we have answered (Q1) fof, — 2 > k¢ > 2d.4, but the

method used in Lemma 5 is not necessarily optimal. Now, we turn

to the most difficult case which &4, > ki > di + 1. We will give
a solution for this case in the remainder of this section.

Lemma 6: If Xcis avalid(di,di + r;da, k2), 1 <r < dy — 1,
array with no R runs greater tha#, and 0 < ¢ < r, then
X't [di ()] has R runs of lengtd; in each row whereX ¢ has R
runs of lengthd; and R runs of lengtiminimum{s + ¢, d: } in each
row whereX ¢ has R runs of length < d;.

Proof: If row i of X¢ has an R run of length;, then inX¢'*'
row i has an R run of length, +¢ and inX ¢'**[d, (+7)] row i has an
R run of lengthd;. If row ¢ of X¢ has an R run of length, s < d,
then inX¢'™' row i has R run of lengths +¢. If s+t > d; then in
X' Hdy (/)] row i has an R run of lengtd;. If s +¢ < di then
in Xc'™[(dy — s — #)(/h)] row i has an R run of lengtd; and in
X' dy ()] row i has an R run of length + ¢. O

Definition 10: For a valid(d1,d1 + r;d2, k2), 1 <7 < dy — 1
array Xe¢, with no R runs greater thar;, and0 < ¢+ < r, the
operationX ¢'**[d, (+2)] is calledt-balancing

Definition 11: For a valid(d1,d1 + r;d2, k2), 1 < r < dq — 1,

array X, a balancing methods a method which produces a valid

(dv,dy + r;d2, k2) R dy balanced arrayX 7, .
Definition 12: A balancing method fofd:, k1;d2, k2) arrays is
called optimal if

1) For any given valid(dy, k1;d2, k2) array X, it produces an

array Z of width less than or equal ter such thatX 7 is a
valid (d1, k1;d2, k2) R d; balanced array.

2) There exists a validdy, k1; d2, k») array X; such that there

is no arrayZ; of width less thanv for which X, Z, is a valid
(d1,k1;d2, k2) R di balanced array.
Lemma 7: If Xcisavalid(di,di +r;da, k), 1 <r < dy — 1,

array with no R runs greater tha# then there exists a valid
(di,d1+7;ds, ko) Rdy balanced arrayX ¢Z in which the rightmost

column of Z is eitherc or ¢.
Proof: By Lemma 6, in the arrayX¢""'[d; (s7)] the R run

with no R runs greater thad,

o[-

merging columns are enough to obtain ardRbalanced array, where
s is the shortest R run of a symbol in the array.

The balancing implied by Corollary 5 is optimal by considering a

valid (di,dy + r;da, k2), 1 < r < dy — 1 array X, which has all
possible R runs betweenandd;. At least

o([452]+)-

columns are needed to obtain andR balanced array by adding
merging columns to the right ak’. We will omit the proof of this
claim and leave it to the interested reader.

Lemma 8: If X isavalid(di,di +7r;d2,k2), 1 <r <di—1,R
dy balanced array anel” is a valid(d;, d1+r; d2, k2) L d1 balanced
array then there exists a merging artgysuch thatX ZeY is a valid
(di,dy + r;da, ko) array.

Proof: First note that if the last column ofX is e then
XeY is a valid (dy,d; + 7;d2, ko) array. If the last column of
X is e then X (&)"1eY is a valid (di,d, + 7;d2, k2) array. If
the last column ofX is neithere nor e then sinceX is a valid
(d1,dy 4+ r;d2, k2) R d; balanced array it follows thake and X¢e
are valid(d1, di + r; d2, k2) arrays. The shortest R run ke is of
lengthl, and the shortest R run iie is 1. By Lemma 2, X e[dy (712)]
and X¢e[d, ()] are valid(di,dy + 7;d2, k2) arrays with no R runs
greater thani;, and their last column ig ande, respectively. The
shortest R run of both arrays is of length By Lemma 7 we can
form either a valid(di, di + r;ds, k2) array X e[d: ()] Z1e™t or
avalid (di, d, + r;do, k2) array Xe[d, (11)] Zze?, which is Rd,
balanced. Hence, eitheXe[d: ()] Z1eY or Xe[di ()] Zz¢Y is a
valid (di,dq + r; d2, ko) array. O

Corollary 6: If X isavalid(d,,di+r;d2,k2), 1 <r <di—1R
dy balanced array anel” is a valid(d;, d1+r; d2, k2) L d1 balanced
array then there exists an array of width at most

(529

such thatX ZeY is a valid (d1,dy + r; do, ko) array.
Theorem 1:If X andY are valid(di,dy + r;d2, k2),1 < r <
d; — 1 arrays, then there exists a merging arfayf width at most

(4]

in each row is eitherl; or greater byr than the run in the same for which XZY is a valid (d1,d: + r;d2, k2) array.

row of X¢, but not exceeding;. By Lemma 2, the last column of

Proof: By Lemma 1 and Corollary 1, we need to cascade one

X' d ()] is @ If s is the shortest R run itk ¢ then we apply merging column to the right ok to obtain a valid d:, di +7; dz2, k2)

r-balancing

’7(]1 bl S—‘ _1
r

array with no R runs greater thah. By Corollary 5, at most

ERE
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additional merging columns are needed to obtain a valid/sR

balancedd;, d; + r;ds, k=) array X Z;. Similarly, at most

d1< dl—_l +1>
r

additional columns are needed to obtain a validdL balanced

(di,dy +r;ds, ko) arrayeZ,Y . By Corollary 6, at most

d1< dy —1 +2)
r

more merging columns are needed to obtain a valid, Fbalanced
(d1,dy + r;ds, ky) array X Z, Zse® . Thus for the valid(d,, d; +

rida, ko) array X ZY = X 71 ZzeZ,Y, the width of Z is

([ 0)

In general, in order to cascade the arra¥s, X», Xs,--- by
using the merging arrayg., Z-, Zs,--- to form the global array

such thatX T Tse ToY is a valid (d1,di + r;da, k2),1 < 7 <
d; — 1 array. We define

T r
and distinguish between five cases:

Case 3.1: If the last column ofXT} is e andm is odd then

Ty = (&) e’ () - - - (€)' ™2 m=1(g)'™

wherei; = d; for1 < j < m.

Case 3.2: If the last column ofXT) is e andm is even then
Ts = ''(2)2e'® - (2) =2 (e) =1 (2)'™
wherei; = dy for1 < j < m.
Case 3.3: If the last column ofXT) is e andm is even then

T, = 67‘(5)i10i2 (5)'?3 ... (E)’:m—Scim—Z (5)im—1

X117, X27:X375 -+, we need to identify the merging arrays fromwherei; = d; +7» for 1 < j < s—1, iy = 2d, — s7,i; = d for
the global array. Otherwise, we will not be able to retrieve the+ 1 < j < m — 1.

information residing in the array&’;, X, X3, -.

One way to obtain this goal is to use a vecton, ji,i2,
Jo,i3,J3,--+), Wherei, is the width of X, and j,. is the width

of Z,.

Case 3.4: If the last column ofX7} is & andm is odd then
Ty = (&) e't(e)2e'3 - .- () m—3e'm=2(g) m-1

wherei; = dy +rforl < j<s—1, is =2d — sri; =d; for

But typically, this is done by requiring that the arrays +1 < j < m — 1.

Xy, X2, X3, - - will be of equal width, and the arrays,, 7>, Z3, - - -
will be also of equal width. If all the arrays are valid, k1; d2, k=)

arrays we distinguish between three cases.

Case 1: If k; > 4d, — 2 then by Corollary 3 all the merging

arrays can have widthd;.

Case 2: If 4dy —3 > k1 > 2d; then by Lemma 5 all the merging

arrays can have widthd;.

Case 3:If 2dy — 1 > k1 > di + 1 then we claim that all the

merging arrays can have width

(7] +)

wherer = k1 — d;. Let X andY be valid (di,dy + r;d2, k2), 1 <
r < di — 1, arrays. First, we claim that we can obtaif&.d: +

r;ds, k2) R dy balanced arrayX 77 such that the width of; is

s[5 +)

This is done by constructing '+, applyingr-balancing

]
’
times and then applyingd: — a)-balancing, where

a:l+7[dlﬂ_1—‘ -7

By Lemma 6, the resulting arra¥ 73 is a valid (d1,dy + r;d2, k2)

R d; balanced and the width d&f; is

d1< dl—_l + 1>.
7

Similarly, we can obtain a validd:,d: + r;d2, k2) L d; balanced

array e T,Y such that the width ot 75 is

d1< (11—1 +1>
I

Finally, we claim that we can obtain a merging arf8y of width

NN

Case 3.5: If the last column of X T} is neithere or e then T3
is obtained by constructing eithe¥Tie[d: ()] or XTie[di(m)],
applying r-balancing

’761‘1 — 1—‘ _1
r

times and then applyingd: — a)-balancing, where
a:l—l—rrh—_l—‘ — 7.
r

By Lemma 6, both resulting arrays are validh,d: + r;d2, k2) R
d; balanced one of them hasas the last column and the second
hasz as the last column. LeK7se™ be the array in whiche is
the last column.

A simple computation shows that in all these five cases the width
of Ts is di([“=] + 1) Thus the resulting merging array for
2d; — 1 Z k1 2 di +1 has width

([*5]+1)

IIl. A PPLICATIONS OF CASCADING CONSTRAINED ARRAYS

As stated in the Introduction, cascading is important in encoding
and decoding of constrained arrays and in the computation of the
capacity rate of the corresponding channels. In this section we will
briefly discuss applications of cascading in error correction. Error-
correction RLL sequences were considered in [1], [8], [15]. Some
interesting methods for error-correction of other constrained codes,
e.g., DC-free block codes are discussed in van Tilborg and Blaum
[13], Calderbank, Herro, and Telang [3], and Etzion [4]. We now
discuss two generalizations to constrained arrays.

The first method is the method of Etzion [4] which was used for
DC-free block codes. Assume we have a coflevith M distinct
n1 Xne (di, ki, ds, k2; ds, ks, d4, ka) arrays and minimum Hamming
distanceD;. Assume further that we have a cascading method for
(di, k1, da, ka;ds, ks, da, ka) arrays. We want to generate a cade
with M (d1, k1, d2, ka3 ds, ks, da, ks) arrays, of sizen; x nsz, and
minimum Hamming distancé., D> > Dy, such thatns is small
as possible.
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Let S be the smallest integer such that > nyns, and leta Case 2: ky =2d, +r, 0 <r <d, — 1, we generate the array
be a primitive element in GR°). For a given arrayC' € A, let dis- ndig di- Ndy di- Ndy
¢ij» 0<i<ny—1,0<j<ny—1, denote the value of' in row (500) ™ (500) ™ (505 ) 7 (505 ) 7+ (0 ) 7 (50)
i and columnj. We compute the followingD, — D functions: Clearly, this is a valid(dy. k1; ds. k2) array of sizen, x (2nd,).
: iny+jy2m—1 Using this method on all the codewords 6f we obtain a code
fm(C) = Z (a ) . 1<m< Dy =D with M (di,k1;d2,k2) arrays and minimum Hamming distance
eig = 2D1 D»d,.

Assume we have an encoding algorithhfor (dy, ki, dz, ko: Case 3: ki =di +r, 1 <r < di — 1, we generate the array

ds, ks, da, ka) arrays. Letr be the smallest integer such that gt (sil)’"(g)dlsdl (siz)’"(g)dlsdl (sig)r...
encodes at leas?® ny x v (dyi, ki, ds, ko;ds, ks, da, ka) arrays, _dy rody

i.e., for each integey, 0 < ¢ < 2° — 1, E encodesq into (5)7s (8‘) (5)

anny x 7 (di, ki,da, koyds, k3. da, kq) array. For each function wheres is any(ds, k2 ) RLL sequence of length, . Note that another
fm(C),1 < m < D> — D1, we encodéog,, f.(C), where the way to write the same array is

logarithm is in GR27), into anny x r (dy, k1, dy, ko ds, ks, da, kq) i oy ey L

array with the encoding algorithB. Let ¢(£,.(C)) be the resulting s (i) ()™ ()™ (s5)" (i)™ (1) -
n1 x r array of this encoding procedure. Ld?, be the array ()" () (s4,,) " (1) "1

obtained by cascading. — 1 identical copies ofe(f,.(C)) with
appropriate merging arrays between these copies ff,(C)). We
form the arrayC’ by cascadingC'Z1 P1 ZoPs - -+ Zpy— 1y Poy— 1y,

Clearly, thisis a validd, k1; d2, k2) array of sizen x (nr+2nd; ).
Using this method on all the codewords @fwe obtain a code with

whereZy, Zs. -+ Zp, n, are appropriate merging arrays obtained”! (?1-%1: 2. k2) arays and minimum Hamming distancé: D..
by the cascading method.
Similarly to the proof in [4] we can show that after applying IV. CoNcLusioN

this procedure on all thé/ codewords ofA we have obtained a  Given two valid (d,, k1; d2, k») arraysX andY’, with the same

code A’ with M (dy, k1, dz, ka;ds, ks, da, ka) arrays and minimum  vertical size, withk; > d; andks > d», we have shown how to find

Hamming distanceD-. Given a transmitted array fromi’ the a merging arrayZ such thatX ZY is a valid(d., k1; d2, k=) array. In

decoding of this array obtained by this method will be done in gur construction methods we have distinguished between three cases.

very similar way to the decoding procedure in [4]. By considering Case 1: k1 > 4dy — 2, in which our method is optimal.

the arguments in [4] we can take d%, the array obtained by Case 2: k; > 2d;.

cascadingD. — m copies ofe(f»(C)). The result is again a code Case 3: k; > d, +1, in which we have used an optimal balancing

with M (dy, k1, d2, k2; ds, ks, da, k4) arrays and minimum Hamming method.

distance D, and shorter horizontal width. The only advantage of |t is not clear whether the methods used for Cases 2 and 3 are

the method we have presented is that its decoding algorithm candpgimal. Also, we would like to see optimal cascading methods which

presented in a simpler way. produce optimal merging arrays in all cases. Another problem for
The second method is based on the existence of error-correctiggher research is finding cascading methods for other constraints,

codes for RLL sequences and the existence of “good” error-correctiggd to specify exactly when we can cascade two valid constrained

codes over arbitrary alphabets. We will consider dply, k1; d2, k2)  arrays and when we cannot.

arrays. Assume we have

1) a codeC of length» and minimum Hamming distanc®+, ACKNOWLEDGMENT
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Two-Step Trellis Decoding of of the cosets of the block code can be found as branch labels in the

Partial Unit Memory Convolutional Codes PUM code trellis. These codes make the most of the new decoding
technique.

Marianne Fjelltveit Hole and @yvind Ytrehusiember, IEEE The remainder of the correspondence is organized as follows.

Section |l describes punctured convolutional codes and gives a
- ' _ motivating example. In Section Ill, the new modified Viterbi decoding
Abstract—We present a new soft-decision decoding method for high- for PUM codes is introduced. Next, in Section IV, bounds on the
rate convolutlonal_ codes. The decoding method is espec_|a||y _weII-suned number of operations needed to decode a block code and all its
for PUM convolutional codes. The method exploits the linearity of the . . . .
parallel transitions in the trellis associated with PUM codes. We provide COS€ts are provided. A connection between the weight hierarchy _Of
bounds on the number of operations per decoded bit, and show that the block code and the trellis representing the block code and all its
this number is dependent on the weight hierarchy of the linear block cosets, is presented. Section V shows how to design codes well suited
code associated with the parallel transitions. The complexity of the new for the new decoding technique. In Section VI, the complexity of the

decoding method for PUM codes is compared to the complexity of Viterbi . . . " .
decoding of comparable punctured convolutional codes. Examples from a new decoding of PUM codes is compared to the Viterbi decoding of

special class of PUM codes show that the new decoding method comparePunctured codes. Section VII contains a brief conclusion.

favorably to Viterbi decoding of punctured codes. It is assumed that the reader is familiar with the theory for
Index Terms—Decoding, partial unit memory convolutional codes, convolutional codes and encoding matrlce_s as presented by Forney

weight hierarchy. [9], Johannesson and Wan [10], or Dholakia [11].

Il. PUNCTURED CODES AND THEIR DECODING

. L . . ) Consider a trellis representing am, k, v, dr...) convolutional
Consider an application where Viterbi decoding of a high-ratg,ye The trellis hag* outgoing branches from each state. The

convolutional code is used. A punctured representation of the Cfanches have labels consisting fencoded bits. If the Viterbi

volutional code is often selected because it reduces the numbera orithm is applied to the trellis representing the, k, v, de.)

operations per decoded bit significanFIy c.ompared to a nonpunctur e, the number of operations needed in one depth of the trellis
representation. The path memory size is almost the same for §v . (2* .7 additionst (2* — 1) comparisons Note that this is the
punctured and the nonpunctured representation of the code. If inStﬁﬁgnber of operations needed to decddimformation bits

we assume that a Partial Unit Memory (PUM) convolutional code IS p 5o e convolutional codes constitute a subclass of ordinary

used, the constraint length is often smaller than the constraint Ien%ﬁvolutional codes. The number of operations per decoded bit is
of a comparable punctured convolutional code. Many authors haé’?@nificantly less for punctured convolutional codes than for ordinary

investiggted the class of PUM codes [1]-{4]. It is known that aM¥onvolutional codes when the Viterbi algorithm is used. A punctured
convolutional code may be represented as a PUM code. We presgpt k/n convolutional code can be generated by a rafe’

a modification of the Viterbi algorithm for PUM codes that ofte

results in fewer operations per decoded bit than Viterbi decoding

comparable punctured codes, and which needs a smaller path memory

because of the smaller constraint length. N . I .
A convolutional code with raté/n, constraint length/, and free * By perlodlcal_ly dele_tlngk -’ —n of the enc_oded bils in this

distancels,.., is said to be afin, k, v, di.. ) convolutional code. For output, thek input bits generate. encoded bits.

an (n, k, v, die.) PUM convolutional codek > v. Hence, there are The trellis representing the ratie/»’ convolutional code has in

parallel branches between states in the trellis representing the PE##N depth only two outgoing branches from each state, and each
_ _ _ ~ branch label has' encoded bits. Therefore, only one comparison
Wa“gil“pspcg'rlt’ééeg;'t‘fed Nsoenljvtgggr?r;;é?g?ég‘é‘ﬁg? June 8, 1996. This Wefifd 2 - " additions are needed per state when applying the Viterbi
The authors are with the Department of Informati(;s, University of Bergef?,lgqr,'thm' In depths where b'tsl are being deleted the number of
N-5020 Bergen, Norway. additions per state is less thann’. The total number of operations

Publisher Item Identifier S 0018-9448(97)00098-9. per state is still2 - »’ + 1 because the additions are replaced by
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rl(:)(};nvolutional code in the following way [12]:

Encodek bits by the original ratel/»’ encoder. The corre-
sponding output has length- »'.
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