
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997 319

REFERENCES

[1] E. F. Assmus, Jr., and V. S. Pless, “On the covering radius of extremal
self-dual codes,”IEEE Trans. Inform. Theory, vol. IT-29, pp. 359–363,
May 1983.

[2] R. A. Brualdi and V. S. Pless, “Orphans of the first order Reed-Muller
codes,”IEEE Trans. Inform. Theory, vol. 36, pp. 399–401, Mar. 1990.

[3] , “Weight enumerators of self-dual codes,”IEEE Trans. Inform.
Theory, vol. 37, pp. 1222–1225, July 1991.

[4] J. H. Conway and N. J. A. Sloane, “A new upper bound on the minimal
distance of self-dual codes,”IEEE Trans. Inform. Theory, vol. 36, pp.
1319–1333, Nov. 1990.

[5] H. P. Tsai, “Existence of certain extremal self-dual codes,”IEEE Trans.
Inform. Theory, vol. 38, pp. 501–504, Mar. 1992.

[6] , “Existence of some extremal self-dual codes,”IEEE Trans.
Inform. Theory, vol. 38, pp. 1829–1833, Nov. 1992.

Cascading Methods for Runlength-Limited Arrays

Tuvi Etzion, Member, IEEE

Abstract—Runlength-limited sequences and arrays have found ap-
plications in magnetic and optical recording. While the constrained
sequences are well studied, little is known about constrained arrays. In
this correspondence we consider the question of how to cascade two arrays
with the same runlength constraints horizontally and vertically, in such
a way that the runlength constraints will not be violated. We consider
binary arrays in which the shortest run of a symbol in a row (column)
is d1(d2) and the longest run of a symbol in a row (column) isk1(k2).
We present three methods to cascade such arrays. Ifk1 > 4d1 � 2 our
method is optimal, and if k1 � d1 + 1 we give a method which has a
certain optimal structure. Finally, we show how cascading can be applied
to obtain runlength-limited error-correcting array codes.

Index Terms—Cascading, merging arrays, runlength-limited arrays,
runlength-limited sequences.

I. INTRODUCTION

Runlength-limited (RLL) codes are binary codes whose mini-
mum and maximum runlengths of consecutive zeroes or ones in
its codewords are constrained. Such codes have found applications
in magnetic and optical recording, partial response channels, line
coding, and bar codes [6], [7], [11]. The one-dimensional case of
RLL sequences is well studied, while the two-dimensional case,
which has horizontal and vertical constraints, has received attention
from only a few authors such as Orcutt and Marcellin [9], [10]
who studied multitrack or stacked RLL codes. Two-dimensional RLL
codes were considered by Etzion and Wei [5]. These arrays will
also be considered in this correspondence. We will study one of
the fundamental questions about RLL arrays: how to cascade two
constrained arrays in such a way that the constraints of the runlength
will not be violated. This question is important in studying encoding,
decoding, and error correction of RLL arrays, and in studying the
capacity rate of the corresponding channels.

The problem of cascading RLL sequences has been studied by
Tang and Bahl [12], Beenker and Immink [2], and Weber and Abdel-

Manuscript received September 29, 1995; revised June 21, 1996. This work
was supported in part by the fund of the promotion of sponsored research.
Part of this work was performed while the author was visiting Bellocore,
Morristown, NJ.

The author is with the Computer Science Department, Technion–Israel
Institute of Technology, Haifa 32000, Israel.

Publisher Item Identifier S 0018-9448(97)00180-6.

Ghaffer [14]. But the problems in cascading RLL arrays are more
involved than the ones in cascading RLL sequences. The reason is
that we have constraints in both directions, horizontally and vertically,
and these constraints have some dependency.

All sequences and arrays in this correspondence are binary. There
are many types of constraints found in the literature and applications
[6]. The most popular ones are the(d; k) constraints, which are sets
of binary sequences in which any runlength of consecutive zeroes
is betweend and k, inclusive. In this correspondence we consider
a more general class of runlength-limited sequences. We adopt the
following notation: a(d1; k1; d2; k2) sequence is a sequence in which
the length of the shortest run of consecutive zeroes (ones) is at least
d1 (d2), and the length of the longest run of consecutive zeroes
(ones) is at mostk1 (k2). If d1 = d2 and k1 = k2 then it is
called a (d1; k1) sequence. We make the natural assumption that
1 � di � ki, for i = 1; 2. In some literature, a(d; k) code refers to a
set of sequences whose runlengths of consecutive zeroes are between
d and k inclusively. It is easy to verify that this is equivalent to
specifying that the runlengths, whether the run consists of zeroes
or of ones, are betweend + 1 and k + 1, inclusively. Therefore, a
(d; k) code is equivalent to a set of(d + 1; k + 1; d + 1; k + 1)
sequences. A(d1; k1; d2; k2; d3; k3; d4; k4) array of sizen1 � n2 is
a binary array withn1 rows andn2 columns such that every row
is a (d1; k1; d2; k2) sequence and every column is a(d3; k3; d4; k4)
sequence. If the horizontal runlength constraints are the same as the
vertical runlength constraints, i.e.,d1 = d3; d2 = d4; k1 = k3; k2 =
k4, it is called a(d1; k1; d2; k2) array. If, furthermore, the runlength
constraints on the zeroes and ones are the same in each dimension,
i.e., d1 = d2 andk1 = k2, then it is called a(d1; k1) array. If only
the runlength constraints on the zeroes and the ones are the same,
i.e., d1 = d2; k1 = k2; d3 = d4, andk3 = k4, then it is called a
(d1; k1; d3; k3) array.

Definition 1: Assume we are given ann1 � n2 (d1; k1; d2; k2;
d3; k3; d4; k4) arrayX and ann1 � n3 (d1; k1; d2; k2; d3; k3; d4;
k4) arrayY . An n1�n4 arrayZ is called amerging arrayif XZY

is a (d1; k1; d2; k2; d3; k3; d4; k4) array.
In this correspondence we consider the following two questions.

(Q1) Given ann1 � n2 (d1; k1; d2; k2; d3; k3; d4; k4) array X

and ann1�n3 (d1; k1; d2; k2; d3; k3; d4; k4) arrayY , does
there exists ann1 � n4 merging arrayZ such thatXZY is
a (d1; k1; d2; k2; d3; k3; d4; k4) array?

(Q2) If the answer to (Q1) is yes, we ask how can we find such
Z, and what is the narrowest merging array?

(Q1) and (Q2) are questions on the horizontal cascading. We have
similar questions and answers on the vertical cascading. Without loss
of generality we will only consider the horizontal cascading. The rest
of this correspondence is devoted for answering these questions for
certain constraints. In Section II we will give the main results on
cascading constrained arrays, i.e., we will give some answers to (Q1)
and (Q2). In Section III we will give some applications of cascading
constrained arrays. The conclusion is given in Section IV.

II. CASCADING CONSTRAINED ARRAYS

In this section we will show how to generate merging arrays in
order to cascade constrained arrays, without violating the constraints.
We will always assume that the vertical size of the arrays in this
section isn1.

Definition 2: Given a (d1; k1; d2; k2; d3; k3; d4; k4) array X, a
column that can be cascaded to the right ofX without violating the

0018–9448/97$10.00 1997 IEEE

320 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997

vertical and the horizontal constraints, with a possible exception of
a run shorter thand1 or d2 as the rightmost run, is called amerging
column.

The answer for (Q1) is not always positive. Assume we have
the constraint(1; 2; 1; 2; d3; k3; d4; k4); k3 < k4, andc is a column
which starts withk3 zeroes followed byk4 ones, and letX = cc.
By the horizontal constraint the next (merging) column must start
with k3 ones followed byk4 zeroes, but this is impossible by the
vertical constraint on the zeroes. This is one of the reasons that
we will consider in this section only(d1; k1; d2; k2) arrays. We will
show that in this case the answer to our two questions is positive. If
d1 = k1 or d2 = k2 the solution is either trivial or can be transferred
to the one-dimensional case. Henceforth, we will assumek1 > d1

and k2 > d2.
We will make the assumption that all the arrays in this section

have width at leastd1, unless otherwise stated. Also, we will denote
arrays by upper case letters and columns by lower case letters.

Definition 3: An R run (L run) in any row of an array is the
rightmost (leftmost) run in the row.

Definition 4: An arrayX is called avalid (d1; k1; d2; k2) array if
it satisfies the(d1; k1; d2; k2) constraint, with the possible exception
of R runs or L runs smaller thand1.

Without loss of generality we can consider in (Q1) arraysX and
Y which are valid arrays.

Definition 5: A valid (d1; k1; d2; k2) arrayX is called R (L)d1
balancedif the last (first)d1 columns ofX are equal and the column
before (after) thesed1 columns is the complement of each of these
d1 columns.

The importance of R (L)d1 balanced arrays comes from the
observation that if we have ann1 � n2 R (L) d1 balanced array
X then for any(d2; k2) RLL sequencec of lengthn1, as a column
vector,Xc (cX) is a valid(d1; k1; d2; k2) array. For a binary value
b, let �b denote the binarycomplementof b. For a columnc, let �c
denote the column obtained by complementing all the entries ofc.
For a columnc, let ct denotet consecutive copies ofc. For an array
X, let XR denote thereverseof X, i.e., the columns ofX taken
from the last to the first.

Definition 6: For a valid(d1; k1; d2; k2) arrayXc, wherec is the
last column, themerge one operatorresults in a columnm̂, which
is defined as the complement of the entry inc in all rows whereXc

has R runs of length greater than or equal tod1, and the same value
as in c in all rows whereXc has R runs less thand1.

Definition 7: We defineX[1(m̂)] = Xm̂ and if X[r(m̂)] = XY

thenX[(r+1)(m̂)] = XY m̂, i.e., [(r+1)(m̂)] is r+1 consecutive
applications of the merge one operator.

It is important to understand that̂m is dependent in thed1 columns
which are preceeding it. Note thatX(m̂)t isX followed byt identical
columns which are equal tôm, and usuallyX(m̂)t is different
from X[t(m̂)]; t � 2. X(m̂)t (�̂m)t is X followed by t1 identical
columns which are equal tôm and t2 identical columns which are
the complements of the previoust1 columns.

In the results which follow we will give a partial answer to our
two questions. The first lemma is an immediate observation from
Definition 6.

Lemma 1: If X is a valid (d1; k1; d2; k2) array thenXm̂ is an
array with no R runs greater thand1.

Lemma 2: If XcY is a valid (d1; k1; d2; k2) array, where the
width of Y is d1 � 1, thenm̂ = �c in XcY m̂.

Proof: Since by Lemma 1, inXcY m̂ we do not have an R run
with more thand1 symbols, and no runs in a row, with a possible
exception of the first or the last run, can have length less thand1, it
follows thatm̂ must be different in all the positions from the column
preceding it in exactlyd1 positions horizontally, i.e.,̂m = �c.

Corollary 1: If X is a valid (d1; k1; d2; k2) array thenXm̂ is a
valid (d1; k1; d2; k2) array.

Given a valid n1 � n2 (d1; k1; d2; k2) array Xc, what is the
minimum number of columns that we have to cascade to the right of
Xc in order that the resulting array will be R balanced? How many
merging columns do we have to cascade to the right ofXc before
we can cascade any given(d2; k2) RLL sequencee of length n2?
There are a few simple cases.

Case 1: If all the R runs inXc are of length greater or equald1
then by Lemma 2,̂m = �c. In this caseXc(�c)d is R d1 balanced. If
all the runs are also less thank1 thenXce is a valid(d1; k1; d2; k2)
array for any(d2; k2) RLL sequencee of lengthn1.

In Cases 2 and 3 which follow, we assume that the shortest R run
in Xc is of length less thand1.

Case 2: If the shortest R run of a symbol ist1, the longest R run is
t2, andt2� t1 � k1�d1, thenXcd �t +1 is a valid(d1; k1; d2; k2)
array andXcd �t +1(�c)d is an Rd1 balanced(d1; k1; d2; k2) array.
If t2 � t1 < k1 � d1 then for any (d2; k2) RLL sequencee,
Xcd �t +1e is a valid (d1; k1; d2; k2) array.

Case 3: If the longest R run, which is less thand1, of a symbol is
t andd1+t � k1, then inXcm̂ the longest R run ist+1. Therefore,
Xc(m̂)d (�̂m)d is an Rd1 balanced array. Ifd1 + t < k1 then for
any (d2; k2) sequencee;Xc(m̂)d e is a valid(d1; k1; d2; k2) array.

Lemma 3: If Xc is a valid (d1; k1; d2; k2) array, wherek1 �
2d1 � 1, thenY = Xc(m̂)d is a valid (d1; k1; d2; k2) array.

Proof: By Lemma 2,m̂ is a (d2; k2) RLL sequence and hence
Y has the vertical constraint. Sincêm has the complement of the
entries ofc in all the rows in whichXc has R runs of lengths greater
or equald1 and k1 � 2d1 � 1, it follows thatXc(m̂)d does not
have an R run of more than2d1� 1 symbols, and hence it is a valid
(d1; k1; d2; k2) array.

Definition 8: Let X;Y , andXZ1Y be valid (d1; k1; d2; k2) ar-
rays.Z1 is called anoptimal merging arrayif there is no merging
arrayZ2 of width less than the width ofZ1, such thatXZ2Y is a
valid (d1; k1; d2; k2) array.

Definition 9: A cascading method for(d1; k1; d2; k2) arrays is
called optimal if

1) For any given valid(d1; k1; d2; k2) arraysX andY , it produces
a merging arrayZ of width less than or equal tow such that
XZY is a valid (d1; k1; d2; k2) array.

2) There exist two valid(d1; k1; d2; k2) arraysX1 andY1 such
that there is no merging arrayZ1 of width less thanw for
which X1Z1Y1 is a valid (d1; k1; d2; k2) array.

Note that an optimal cascading method does not have to produce
optimal merging arrays in all cases.

Corollary 2: If X is a valid (d1; k1; d2; k2) array, wherek1 �
2d1, ande is any (d2; k2) RLL sequencee of lengthn1 then there
exists a merging arrayZ of width d1, such thatXZe is a valid
(d1; k1; d2; k2) array.

Proof: We generateXm̂ and takeZ = (m̂)d to obtain the
required merging array.

Corollary 3: If X andY are valid(d1; k1; d2; k2) arrays, where
k1 � 4d1�2, then there exists a merging arrayZ of width 2d1 such
that XZY is a valid (d1; k1; d2; k2) array.

Proof: Let m̂1 be the resulting column from applying the merge
one operator onX and letm̂2 be the resulting column from applying
the merge one operator onY R. Now, takeZ = (m̂1)

d (m̂2)
d to

obtain the required merging array.
The cascading method presented in Corollary 3 fork1 � 4d1 � 2

is optimal as proved in the following Lemma.
Lemma 4: For any given nonnegative integers,d1; k1; d2; k2, such

that k1 � 4d1 � 2 and k2 > d2, there exist valid(d1; k1; d2; k2)
arrays X and Y , which do not have a merging arrayZ of

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997 321

width less than2d1, for which XY Z is a valid (d1; k1; d2; k2)

array.
Proof: We construct valid(d1; k1; d2; k2) arraysX andY such

that in the first two rows ofX there are R runs of lengthk1 of
zeroes, and in the first (second) row ofY there is an L run of length
k1 of zeroes (ones). But, if one columnis added, then because of
the horizontal constraint for the first row, at leastd1 columns are
needed, in the merging array, with ones in the first row. Because of
the horizontal constraint for the second row,2d1 columns are needed
in the merging array.

Corollary 4: The cascading method of Corollary 3 is optimal.
Lemma 5: If X andY are valid(d1; k1; d2; k2) arrays,k1 � 2d1,

then there exists a merging arrayZ of width 4d1 such thatXZY is
a valid (d1; k1; d2; k2) array.

Proof: Let m̂1 be the resulting column from applying the merge
one operator onX and letm̂2 be the resulting column from applying
the merge one operator onY R. Now, take

Z = (m̂1)
d
(�̂m1)

d
(�̂m2)

d
(m̂2)

d

to obtain the required merging array.
In Corollary 3, we have answered (Q1) fork1 � 4d1 � 2. In

Lemma 5, we have answered (Q1) for4d1 � 2 > k1 � 2d1, but the
method used in Lemma 5 is not necessarily optimal. Now, we turn
to the most difficult case which is2d1 > k1 � d1 + 1. We will give
a solution for this case in the remainder of this section.

Lemma 6: If Xc is a valid(d1; d1 + r; d2; k2); 1 � r � d1 � 1,
array with no R runs greater thand1 and 0 < t � r, then
Xc

t+1[d1(m̂)] has R runs of lengthd1 in each row whereXc has R
runs of lengthd1 and R runs of lengthminimumfs+ t; d1g in each
row whereXc has R runs of lengths < d1.

Proof: If row i of Xc has an R run of lengthd1, then inXc
t+1

row i has an R run of lengthd1+t and inXc
t+1[d1(m̂)] row i has an

R run of lengthd1. If row i of Xc has an R run of lengths; s < d1,
then inXc

t+1 row i has R run of lengths+ t. If s+ t � d1 then in
Xc

t+1[d1(m̂)] row i has an R run of lengthd1. If s+ t < d1 then
in Xc

t+1[(d1 � s� t)(m̂)] row i has an R run of lengthd1 and in
Xc

t+1[d1(m̂)] row i has an R run of lengths+ t.
Definition 10: For a valid(d1; d1 + r; d2; k2); 1 � r � d1 � 1,

array Xc, with no R runs greater thand1, and 0 < t � r, the
operationXc

t+1[d1(m̂)] is calledt-balancing.
Definition 11: For a valid(d1; d1 + r; d2; k2); 1 � r � d1 � 1,

array X, a balancing methodis a method which produces a valid
(d1; d1 + r; d2; k2) R d1 balanced arrayXZ1.

Definition 12: A balancing method for(d1; k1; d2; k2) arrays is
called optimal if

1) For any given valid(d1; k1; d2; k2) arrayX, it produces an
arrayZ of width less than or equal tow such thatXZ is a
valid (d1; k1; d2; k2) R d1 balanced array.

2) There exists a valid(d1; k1; d2; k2) arrayX1 such that there
is no arrayZ1 of width less thanw for whichX1Z1 is a valid
(d1; k1; d2; k2) R d1 balanced array.

Lemma 7: If Xc is a valid(d1; d1 + r; d2; k2); 1 � r � d1 � 1,
array with no R runs greater thand1 then there exists a valid
(d1; d1+r; d2; k2) R d1 balanced arrayXcZ in which the rightmost
column ofZ is either c or �c.

Proof: By Lemma 6, in the arrayXc
r+1[d1(m̂)] the R run

in each row is eitherd1 or greater byr than the run in the same
row of Xc, but not exceedingd1. By Lemma 2, the last column of
Xc

r+1[d1(m̂)] is �c. If s is the shortest R run inXc then we apply
r-balancing

d1 � s

r
� 1

times to obtain the arrayZ 0 for which the last row is eitherc or �c.
By Lemma 6, the R runs inZ 0 are of lengths between

a = s+ r
d1 � s

r
� r

and d1. Now, since0 < d1 � a � r it follows that we can apply
(d1 � a)-balancing, and by Lemma 6, the new obtained arrayZ is
an Rd1 balanced and by Lemma 2 last column ofZ is eitherc or
�c.

Corollary 5: For a(d1; d1 + r; d2; k2); 1 � r � d1 � 1 arrayX,
with no R runs greater thand1

d1
d1 � s

r
+ 1 � s

merging columns are enough to obtain an Rd1 balanced array, where
s is the shortest R run of a symbol in the array.

The balancing implied by Corollary 5 is optimal by considering a
valid (d1; d1 + r; d2; k2); 1 � r � d1 � 1 arrayX, which has all
possible R runs betweens and d1. At least

d1
d1 � s

r
+ 1 � s

columns are needed to obtain an Rd1 balanced array by adding
merging columns to the right ofX. We will omit the proof of this
claim and leave it to the interested reader.

Lemma 8: If X is a valid(d1; d1+ r; d2; k2); 1 � r � d1� 1, R
d1 balanced array andeY is a valid(d1; d1+r; d2; k2) L d1 balanced
array then there exists a merging arrayZ such thatXZeY is a valid
(d1; d1 + r; d2; k2) array.

Proof: First note that if the last column ofX is �e then
XeY is a valid (d1; d1 + r; d2; k2) array. If the last column of
X is e then X(�e)d eY is a valid (d1; d1 + r; d2; k2) array. If
the last column ofX is neithere nor �e then sinceX is a valid
(d1; d1 + r; d2; k2) R d1 balanced array it follows thatXe andX�e

are valid(d1; d1 + r; d2; k2) arrays. The shortest R run inXe is of
length1, and the shortest R run inX�e is 1. By Lemma 2,Xe[d1(m̂)]

andX�e[d1(m̂)] are valid(d1; d1 + r; d2; k2) arrays with no R runs
greater thand1, and their last column is�e and e, respectively. The
shortest R run of both arrays is of length1. By Lemma 7 we can
form either a valid(d1; d1 + r; d2; k2) array Xe[d1(m̂)]Z1e

d or
a valid (d1; d1 + r; d2; k2) arrayX�e[d1(m̂)]Z2e

d , which is Rd1

balanced. Hence, eitherXe[d1(m̂)]Z1eY or X�e[d1(m̂)]Z2eY is a
valid (d1; d1 + r; d2; k2) array.

Corollary 6: If X is a valid(d1; d1+r; d2; k2); 1 � r � d1�1 R
d1 balanced array andeY is a valid(d1; d1+r; d2; k2) L d1 balanced
array then there exists an arrayZ of width at most

d1
d1 � 1

r
+ 1

such thatXZeY is a valid (d1; d1 + r; d2; k2) array.
Theorem 1: If X andY are valid(d1; d1 + r; d2; k2); 1 � r �

d1 � 1 arrays, then there exists a merging arrayZ of width at most

3d1
d1 � 1

r
+ 1

for which XZY is a valid (d1; d1 + r; d2; k2) array.
Proof: By Lemma 1 and Corollary 1, we need to cascade one

merging column to the right ofX to obtain a valid(d1; d1+r; d2; k2)

array with no R runs greater thand1. By Corollary 5, at most

d1
d1 � 1

r
+ 1 � 1

322 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997

additional merging columns are needed to obtain a valid Rd1

balanced(d1; d1 + r; d2; k2) arrayXZ1. Similarly, at most

d1
d1 � 1

r
+ 1

additional columns are needed to obtain a valid Ld1 balanced
(d1; d1 + r; d2; k2) arrayeZ2Y . By Corollary 6, at most

d1
d1 � 1

r
+ 2

more merging columns are needed to obtain a valid Rd1 balanced
(d1; d1 + r; d2; k2) arrayXZ1Z3e

d . Thus for the valid(d1; d1 +
r; d2; k2) arrayXZY = XZ1Z3eZ2Y , the width ofZ is

3d1
d1 � 1

r
+ 1 :

In general, in order to cascade the arraysX1; X2; X3; � � � by
using the merging arraysZ1; Z2; Z3; � � � to form the global array
X1Z1X2Z2X3Z3 � � �, we need to identify the merging arrays from
the global array. Otherwise, we will not be able to retrieve the
information residing in the arraysX1; X2; X3; � � �.

One way to obtain this goal is to use a vector(i1; j1; i2;
j2; i3; j3; � � �), where ir is the width of Xr and jr is the width
of Zr.

But typically, this is done by requiring that the arrays
X1; X2; X3; � � � will be of equal width, and the arraysZ1; Z2; Z3; � � �

will be also of equal width. If all the arrays are valid(d1; k1; d2; k2)
arrays we distinguish between three cases.

Case 1: If k1 � 4d1 � 2 then by Corollary 3 all the merging
arrays can have width2d1.

Case 2: If 4d1�3 � k1 � 2d1 then by Lemma 5 all the merging
arrays can have width4d1.

Case 3: If 2d1 � 1 � k1 � d1 + 1 then we claim that all the
merging arrays can have width

3d1
d1 � 1

r
+ 1

wherer = k1 � d1. Let X andY be valid(d1; d1 + r; d2; k2); 1 �
r � d1 � 1, arrays. First, we claim that we can obtain a(d1; d1 +
r; d2; k2) R d1 balanced arrayXT1 such that the width ofT1 is

d1
d1 � 1

r
+ 1 :

This is done by constructingXm̂, applyingr-balancing

d1 � 1

r
� 1

times and then applying(d1 � a)-balancing, where

a = 1 + r
d1 � 1

r
� r:

By Lemma 6, the resulting arrayXT1 is a valid(d1; d1 + r; d2; k2)
R d1 balanced and the width ofT1 is

d1
d1 � 1

r
+ 1 :

Similarly, we can obtain a valid(d1; d1 + r; d2; k2) L d1 balanced
array ed T2Y such that the width ofed T2 is

d1
d1 � 1

r
+ 1 :

Finally, we claim that we can obtain a merging arrayT3 of width

d1
d1 � 1

r
+ 1

such thatXT1T3e
d T2Y is a valid (d1; d1 + r; d2; k2); 1 � r �

d1 � 1 array. We define

m =
d1 � 1

r
+ 1; s =

d1

r

and distinguish between five cases:
Case 3.1: If the last column ofXT1 is e andm is odd then

T3 = (�e)i ei (�e)i � � � (�e)i e
i (�e)i

where ij = d1 for 1 � j � m.
Case 3.2: If the last column ofXT1 is �e andm is even then

T3 = e
i (�e)i ei � � � (�e)i (e)i (�e)i

where ij = d1 for 1 � j � m.
Case 3.3: If the last column ofXT1 is e andm is even then

T3 = e
r(�e)i ei (�e)i � � � (�e)i e

i (�e)i

whereij = d1 + r for 1 � j � s� 1; is = 2d1 � sr; ij = d1 for
s + 1 � j � m � 1.

Case 3.4: If the last column ofXT1 is �e andm is odd then

T3 = (�e)rei (�e)i �ei � � � (�e)i e
i (�e)i

whereij = d1 + r for 1 � j � s� 1; is = 2d1 � sr; ij = d1 for
s + 1 � j � m � 1.

Case 3.5: If the last column ofXT1 is neithere or �e then T3
is obtained by constructing eitherXT1e[d1(m̂)] or XT1�e[d1(m̂)],
applying r-balancing

d1 � 1

r
� 1

times and then applying(d1 � a)-balancing, where

a = 1 + r
d1 � 1

r
� r:

By Lemma 6, both resulting arrays are valid(d1; d1 + r; d2; k2) R
d1 balanced one of them hase as the last column and the second
has �e as the last column. LetXT3e

d be the array in whiche is
the last column.

A simple computation shows that in all these five cases the width
of T3 is d1(d

d �1

r
e + 1) Thus the resulting merging array for

2d1 � 1 � k1 � d1 + 1 has width

3d1
d1 � 1

r
+ 1 :

III. A PPLICATIONS OFCASCADING CONSTRAINED ARRAYS

As stated in the Introduction, cascading is important in encoding
and decoding of constrained arrays and in the computation of the
capacity rate of the corresponding channels. In this section we will
briefly discuss applications of cascading in error correction. Error-
correction RLL sequences were considered in [1], [8], [15]. Some
interesting methods for error-correction of other constrained codes,
e.g., DC-free block codes are discussed in van Tilborg and Blaum
[13], Calderbank, Herro, and Telang [3], and Etzion [4]. We now
discuss two generalizations to constrained arrays.

The first method is the method of Etzion [4] which was used for
DC-free block codes. Assume we have a codeA with M distinct
n1�n2 (d1; k1; d2; k2; d3; k3; d4; k4) arrays and minimum Hamming
distanceD1. Assume further that we have a cascading method for
(d1; k1; d2; k2; d3; k3; d4; k4) arrays. We want to generate a codeA0

with M (d1; k1; d2; k2; d3; k3; d4; k4) arrays, of sizen1 � n3, and
minimum Hamming distanceD2; D2 > D1, such thatn3 is small
as possible.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997 323

Let S be the smallest integer such that2
S
� n1n2, and let�

be a primitive element in GF(2S). For a given arrayC 2 A, let
cij ; 0 � i � n1 � 1; 0 � j � n2 � 1, denote the value ofC in row
i and columnj. We compute the followingD2 �D1 functions:

fm(C) =

c =1

(�
in +j

)
2m�1

; 1 � m � D2 �D1:

Assume we have an encoding algorithmE for (d1; k1; d2; k2;

d3; k3; d4; k4) arrays. Letr be the smallest integer such thatE
encodes at least2S n1 � r (d1; k1; d2; k2; d3; k3; d4; k4) arrays,
i.e., for each integerq, 0 � q � 2

S
� 1; E encodesq into

an n1 � r (d1; k1; d2; k2; d3; k3; d4; k4) array. For each function
fm(C);1 � m � D2 � D1, we encodelog� fm(C), where the
logarithm is in GF(2S), into ann1�r (d1; k1; d2; k2; d3; k3; d4; k4)
array with the encoding algorithmE. Let e(fm(C)) be the resulting
n1 � r array of this encoding procedure. LetPm be the array
obtained by cascadingD2 � 1 identical copies ofe(fm(C)) with
appropriate merging arrays between these copies ofe(fm(C)). We
form the arrayC0 by cascadingCZ1P1Z2P2 � � �ZD �D PD �D ,
whereZ1; Z2; � � � ; ZD �D are appropriate merging arrays obtained
by the cascading method.

Similarly to the proof in [4] we can show that after applying
this procedure on all theM codewords ofA we have obtained a
codeA0 with M (d1; k1; d2; k2; d3; k3; d4; k4) arrays and minimum
Hamming distanceD2. Given a transmitted array fromA0 the
decoding of this array obtained by this method will be done in a
very similar way to the decoding procedure in [4]. By considering
the arguments in [4] we can take asPm the array obtained by
cascadingD2 �m copies ofe(fm(C)). The result is again a code
with M (d1; k1; d2; k2; d3; k3; d4; k4) arrays and minimum Hamming
distanceD2 and shorter horizontal width. The only advantage of
the method we have presented is that its decoding algorithm can be
presented in a simpler way.

The second method is based on the existence of error-correcting
codes for RLL sequences and the existence of “good” error-correcting
codes over arbitrary alphabets. We will consider only(d1; k1; d2; k2)

arrays. Assume we have

1) a codeC of length n and minimum Hamming distanceD1,
over an alphabet� with � symbols, andM codewords;

2) a code with� (d2; k2) RLL sequences of lengthn1; s1; � � � ; s�,
and minimum Hamming distanceD2;

3) a 1� 1 mappingf from � to the� (d2; k2) sequences.

Given a codeword

c 2 C; c = (ci ; ci ; � � � ci)

we apply the mappingf and obtainn (d2; k2) RLL sequences of
lengthn1; (si ; si ; � � � ; si), wheref(ci) = si ; 1 � j � n. Now,
we distinguish between three cases:

Case 1: k1 = qd1 + r; 3 � q; 0 � r � d1 � 1, we generate
the array

si
d

si
d
� � � si

d
�si

d
si

d
� � �

si
d

�si
d

si
d
� � �

si
d

�si
d

si
d
� � � si

d
:

Clearly, this is a valid(d1; k1; d2; k2) array of size

n1 � nd1 +
n� q

q � 1
d1 :

Using this method on all the codewords ofC we obtain a code with
M (d1; k1; d2; k2) arrays and minimum Hamming distanceD1D2d1.

Case 2: k1 = 2d1 + r; 0 � r � d1 � 1, we generate the array

(si)
d
(�si)

d
(si)

d
(�si)

d
� � � (si)

d
(�si)

d
:

Clearly, this is a valid(d1; k1; d2; k2) array of sizen1 � (2nd1).
Using this method on all the codewords ofC we obtain a code
with M (d1; k1; d2; k2) arrays and minimum Hamming distance
2D1D2d1.

Case 3: k1 = d1 + r; 1 � r � d1 � 1, we generate the array

s
d

si
r
(�s)

d
s
d

si
r
(�s)

d
s
d

si
r
� � �

(�s)
d
s
d

si
r
(�s)

d

wheres is any(d2; k2) RLL sequence of lengthn1. Note that another
way to write the same array is

s
d

si
r
(m̂)

d
(m̂)

d
si

r
(m̂)

d
(m̂)

d
� � �

(m̂)
d
(m̂)

d
si

r
(m̂)

d
:

Clearly, this is a valid(d1; k1; d2; k2) array of sizen1�(nr+2nd1).
Using this method on all the codewords ofC we obtain a code with
M (d1; k1; d2; k2) arrays and minimum Hamming distancerD1D2.

IV. CONCLUSION

Given two valid(d1; k1; d2; k2) arraysX andY , with the same
vertical size, withk1 > d1 andk2 > d2, we have shown how to find
a merging arrayZ such thatXZY is a valid(d1; k1; d2; k2) array. In
our construction methods we have distinguished between three cases.

Case 1: k1 � 4d1 � 2, in which our method is optimal.
Case 2: k1 � 2d1.
Case 3: k1 � d1+1, in which we have used an optimal balancing

method.
It is not clear whether the methods used for Cases 2 and 3 are

optimal. Also, we would like to see optimal cascading methods which
produce optimal merging arrays in all cases. Another problem for
further research is finding cascading methods for other constraints,
and to specify exactly when we can cascade two valid constrained
arrays and when we cannot.

ACKNOWLEDGMENT

The author wishes to thank V. K. Wei for helpful discussions, and
the referees for their comments, suggestions, corrections, and careful
reading of this manuscript. He also wishes to thank A. Vardy and R.
Talyansky for their helpful comments.

REFERENCES

[1] K. A. S. Abdel-Ghaffar and J. H. Weber, “Bounds and constructions
for runlength-limited error-control block codes,”IEEE Trans. Inform.
Theory, vol. 37, pp. 789–800, 1991.

[2] G. F. M. Beenker and K. A. S. Immink, “A generalized method for
encoding and decoding run-length-limited binary sequences,”IEEE
Trans. Inform. Theory, vol. IT-29, pp. 751–754, 1983.

[3] A. R. Calderbank, M. A. Herro, and V. Telang, “A multi-level approach
to the design of dc-line codes,”IEEE Trans. Inform. Theory, vol. 36,
pp. 579–583, 1989.

[4] T. Etzion, “Constructions of error-correcting DC-free block codes,”
IEEE Trans. Inform. Theory, vol. 36, pp. 899–905, 1990.

[5] T. Etzion and V. Wei, “On two-dimensional run-length-limited codes,”
presented at the IEEE Int. Workshop on Information Theory, Salvador,
Brazil, June 1992.

[6] K. A. S. Immink, Coding Techniques for Digital Recorders. London,
UK: Prentice-Hall Int., 1991.

[7] , “Runlength-limited sequences,”Proc. IEEE, vol. 78, pp.
1745–1759, 1990.

[8] P. Lee and J. K. Wolf, “A general error-correcting code construction for
run-length limited binary channels,”IEEE Trans. Inform. Theory, vol.
35, pp. 1330–1335, 1989.

324 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 1, JANUARY 1997

[9] E. K. Orcutt and M. W. Marcellin, “Enumerable multi-track(d; k) block
codes,”IEEE Trans. Inform. Theory, vol. 39, pp. 1738–1744, 1993.

[10] , “Redundant multi-track(d; k) codes,”IEEE Trans. Inform. The-
ory, vol. 39, pp. 1744–1750, 1993.

[11] T. Pavlidis, J. Swartz, and Y. P. Wang, “Fundamentals of bar code
information theory,”Computer, vol. 23, pp. 74–86, 1990.

[12] D. L. Tang and L. R. Bahl, “Block codes for a class of constrained
noiseless channels,”Inform. Contr., vol. 17, pp. 436–461, 1970.

[13] H. van Tilborg and M. Blaum, “On error-correcting balanced codes,”
IEEE Trans. Inform. Theory, vol. 35, pp. 1091–1095, 1989.

[14] J. H. Weber and K. A. S. Abdel-Ghaffar, “Cascading runlength-limited
sequences,”IEEE Trans. Inform. Theory, vol. 39, pp. 1976–1984, 1993.

[15] Ø. Ytrehus, “Upper bounds on error-correcting runlength-limited block
codes,”IEEE Trans. Inform. Theory, vol. 37, pp. 941–945, 1991.

Two-Step Trellis Decoding of
Partial Unit Memory Convolutional Codes

Marianne Fjelltveit Hole and Øyvind Ytrehus,Member, IEEE

Abstract— We present a new soft-decision decoding method for high-
rate convolutional codes. The decoding method is especially well-suited
for PUM convolutional codes. The method exploits the linearity of the
parallel transitions in the trellis associated with PUM codes. We provide
bounds on the number of operations per decoded bit, and show that
this number is dependent on the weight hierarchy of the linear block
code associated with the parallel transitions. The complexity of the new
decoding method for PUM codes is compared to the complexity of Viterbi
decoding of comparable punctured convolutional codes. Examples from a
special class of PUM codes show that the new decoding method compare
favorably to Viterbi decoding of punctured codes.

Index Terms—Decoding, partial unit memory convolutional codes,
weight hierarchy.

I. INTRODUCTION

Consider an application where Viterbi decoding of a high-rate
convolutional code is used. A punctured representation of the con-
volutional code is often selected because it reduces the number of
operations per decoded bit significantly compared to a nonpunctured
representation. The path memory size is almost the same for the
punctured and the nonpunctured representation of the code. If instead
we assume that a Partial Unit Memory (PUM) convolutional code is
used, the constraint length is often smaller than the constraint length
of a comparable punctured convolutional code. Many authors have
investigated the class of PUM codes [1]–[4]. It is known that any
convolutional code may be represented as a PUM code. We present
a modification of the Viterbi algorithm for PUM codes that often
results in fewer operations per decoded bit than Viterbi decoding of
comparable punctured codes, and which needs a smaller path memory
because of the smaller constraint length.

A convolutional code with ratek=n, constraint length�, and free
distancedfree, is said to be an(n; k; �; dfree) convolutional code. For
an (n; k; �; dfree) PUM convolutional code,k > �. Hence, there are
parallel branches between states in the trellis representing the PUM

Manuscript received September 25, 1995; revised June 8, 1996. This work
was supported by the Norwegian Research Council, NFR.

The authors are with the Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.

Publisher Item Identifier S 0018-9448(97)00098-9.

code. The labels on these parallel branches constitute cosets of an
[n; k� �; dmin] block code. This block code is defined by the labels
on the branches starting and ending in state zero of the PUM code
trellis. The decoding of the block code and the cosets reduces the
2k�� parallel branches between any pair of states in the PUM code
trellis to only one branch.

Assuming the Viterbi algorithm and using the number of operations
per decoded bit as a complexity measure, the trellis with fewest states
that represents a block code is the best trellis representation [5], [6].
We show what the best trellis representation is when decoding, in
addition to the block code, all the cosets of the block code. Specially,
an upper and a lower bound on the total number of operations needed
to decode the block code and all its cosets, are given. For block codes
satisfying the chain condition [7], [8], it is shown how to determine
the best trellis representation which attains the lower bound. We also
give examples from a special class of PUM codes where not all words
of the cosets of the block code can be found as branch labels in the
PUM code trellis. These codes make the most of the new decoding
technique.

The remainder of the correspondence is organized as follows.
Section II describes punctured convolutional codes and gives a
motivating example. In Section III, the new modified Viterbi decoding
for PUM codes is introduced. Next, in Section IV, bounds on the
number of operations needed to decode a block code and all its
cosets are provided. A connection between the weight hierarchy of
the block code and the trellis representing the block code and all its
cosets, is presented. Section V shows how to design codes well suited
for the new decoding technique. In Section VI, the complexity of the
new decoding of PUM codes is compared to the Viterbi decoding of
punctured codes. Section VII contains a brief conclusion.

It is assumed that the reader is familiar with the theory for
convolutional codes and encoding matrices as presented by Forney
[9], Johannesson and Wan [10], or Dholakia [11].

II. PUNCTURED CODES AND THEIR DECODING

Consider a trellis representing an(n; k; �; dfree) convolutional
code. The trellis has2k outgoing branches from each state. The
branches have labels consisting ofn encoded bits. If the Viterbi
algorithm is applied to the trellis representing the(n; k; �; dfree)
code, the number of operations needed in one depth of the trellis
is 2� � (2k �n additions+(2k�1) comparisons). Note that this is the
number of operations needed to decodek information bits.

Punctured convolutional codes constitute a subclass of ordinary
convolutional codes. The number of operations per decoded bit is
significantly less for punctured convolutional codes than for ordinary
convolutional codes when the Viterbi algorithm is used. A punctured
rate k=n convolutional code can be generated by a rate1=n0

convolutional code in the following way [12]:

• Encodek bits by the original rate1=n0 encoder. The corre-
sponding output has lengthk � n0.

• By periodically deletingk � n0 � n of the encoded bits in this
output, thek input bits generaten encoded bits.

The trellis representing the rate1=n0 convolutional code has in
each depth only two outgoing branches from each state, and each
branch label hasn0 encoded bits. Therefore, only one comparison
and 2 � n0 additions are needed per state when applying the Viterbi
algorithm. In depths where bits are being deleted the number of
additions per state is less than2 � n0. The total number of operations
per state is still2 � n0 + 1 because the additions are replaced by

0018–9448/97$10.00 1997 IEEE

